NSF-Funded Computing Center Boosts US Science with Largest Academic Supercomputer in the World

September 3, 2019

September 3, 2019 — Today, the Texas Advanced Computing Center (TACC) at The University of Texas at Austin (UT Austin) launched Frontera, the fastest supercomputer at any university and the fifth most powerful system in the world. The system is the result of a $60 million investment by the National Science Foundation (NSF) to advance the next generation of leadership class computing.

The Frontera supercomputer at the Texas Advanced Computing Center. Image courtesy of TACC.

Joined by representatives from NSF, UT Austin and technology partners Dell EMC, Intel, Mellanox, DataDirect Networks, NVIDIA, IBM, CoolIT and Green Revolution Cooling, TACC inaugurated a new era of academic supercomputing with a resource that will help the nation’s top scientists explore science at the largest scale and make the next generation of discoveries.

“Scientific challenges demand computing and data at the largest and most complex scales possible. That’s what Frontera is all about,” said Jim Kurose, assistant director for Computer and Information Science and Engineering at NSF. “Frontera’s leadership-class computing capability will support the most computationally challenging science applications that U.S. scientists are working on today.”

First announced in August 2018, Frontera was built in early 2019 and earned the number five spot on the twice-annual Top500 list in June, achieving 23.5 PetaFLOPS (one thousand million million floating-point operations-per-second) on the high-performance LINPACK benchmark, a measure of the system’s computing power.

Frontera has been supporting science applications since June and has already enabled more than three dozen teams to conduct research on a range of topics from black hole physics to climate modeling to drug design, employing simulation, data analysis and artificial intelligence (AI) at a scale not previously possible.

Olexandr Isayev, a chemist from the University of North Carolina, used Frontera to run more than 3 million atomic force field calculations in less than 24 hours — a major achievement in high-speed quantum computation. The calculations are part of an effort to train an AI system that can predict the likely characteristics of new drug compounds and identify compounds with the ability to target specific cells.

“It’s a great machine, especially for quantum mechanics applications,” Isayev said. “We’re really looking forward to running large-scale calculations that were not possible before.”

Ganesh Balasubramanian, an assistant professor of mechanical engineering and mechanics at Lehigh University, has been using Frontera to study the dynamics of organic photovoltaic materials and model manufacturing conditions.

“The lightning speed at which Frontera performs computations is very beneficial,” said Balasubramanian, who during the early user period experienced a five time speed-up in his simulations of solar material manufacturing. “Overall, the entire pace of computational research will be increased by the arrival of Frontera.”

Manuela Campanelli, an astrophysicist at the Rochester Institute of Technology, has been using Frontera to perform the longest simulations ever of the merger of neutron stars, including for the 2017 event detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO), the Europe-based Virgo detector, and 70 ground- and space-based observatories.

“Frontera is an amazing system because it gives us a very large number of computer nodes that we can use to solve very complex problems,” Campanelli said. “These types of resources are unavailable on most university campuses, so we really need to have Frontera in order to be able to do the simulation we do.”

Frontera combines Dell EMC PowerEdge servers with 8,008 compute nodes, each of which contains two, second generation Intel Xeon scalable (“Cascade Lake”) processors, totaling more than 16,000 processors and nearly half a million cores, connected by a 200 gigbit-per-second HDR Mellanox InfiniBand high-speed network.

The system incorporates innovative flash storage from DataDirect Networks and novel cooling systems from CoolIT, Cooltera and Green Revolution Cooling (GRC) and employs several emerging technologies at unprecedented scales, including high-powered, high-clock rate versions of the latest Intel Xeon processors, Intel Deep Learning Boost, Intel Optane memory and several kinds of liquid cooling.

In August, Frontera added two new subsystems to provide additional performance and to explore alternate computational architectures for the future. A 360 NVIDIA Quadro RTX 5000 GPU (graphics processing unit) system submerged in liquid coolant racks developed by GRC will explore more efficient ways to cool future systems, as well as explore single-precision optimized computing. An IBM POWER9-hosted system with 448 NVIDIA V100 GPUs will provide additional performance and provide the top-performing GPU architecture with tight coupling to the processor and memory subsystems. These additional systems will accelerate AI, machine learning and molecular dynamics research for Frontera researchers in areas ranging from cancer treatment to biophysics.

In the coming months, Frontera will integrate with cloud providers Microsoft, Google and Amazon to provide researchers access to emerging computing technologies and long-term storage.

Frontera (Spanish for “frontier”) will operate for at least five years and will support hundreds of research projects and thousands of researchers in nearly every field of science over its lifetime. It is expected to have a major impact on:

  • Natural hazards modeling — predicting the trajectory and intensity of storms, and helping to design infrastructure that can withstand the strongest disasters;
  • Genomics — including precision agriculture to feed the world’s growing population;
  • Energy research — from fusion to solar power to cleaner coal.
  • Astrophysics — including multimessenger astronomy and gravitational wave modeling.
  • Materials sciences — using a combination of modeling and deep learning to accelerate the development of new molecules for medicine and engineering.

Projects will be selected through a competitive application process and researchers will need to show that they require a computer at the scale of Frontera to solve their problems.

Faculty at the Oden Institute for Computational Engineering and Sciences at UT Austin are leading the world-class Frontera science applications and technology team, with partners from the California Institute of Technology, Cornell University, Georgia Tech, Ohio State University, Princeton University, Stanford University, Texas A&M University, the University of Chicago, the University of Utah and the University of California, Davis.

Frontera will serve as a workhorse for the largest and most experienced computational users in the nation and a training ground for the next generation of scientists.

“Academic researchers have never had a tool this powerful to solve the problems that matter to them,” said Dan Stanzione, TACC executive director. “We are proud to launch Frontera — a new, national resource for science that will power the discoveries of the future.”

About the National Science Foundation

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2019, its budget is $8.1 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 50,000 competitive proposals for funding and makes about 12,000 new funding awards.


Source: NSF 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results released this week by Hyperion Research at SC19 in Denver, Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather and climate models struggle to run efficiently in their HPC en Read more…

By Oliver Peckham

Microsoft, Nvidia Launch Cloud HPC Service

November 20, 2019

Nvidia and Microsoft have joined forces to offer a cloud HPC capability based on the GPU vendor’s V100 Tensor Core chips linked via an InfiniBand network scaling up to 800 graphics processors. The partners announced Read more…

By George Leopold

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU-accelerated computing. In recent years, AI has joined the s Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Data Management – The Key to a Successful AI Project

 

Five characteristics of an awesome AI data infrastructure

[Attend the IBM LSF & HPC User Group Meeting at SC19 in Denver on November 19!]

AI is powered by data

While neural networks seem to get all the glory, data is the unsung hero of AI projects – data lies at the heart of everything from model training to tuning to selection to validation. Read more…

SC19 Student Cluster Competition: Know Your Teams

November 19, 2019

I’m typing this live from Denver, the location of the 2019 Student Cluster Competition… and, oh yeah, the annual SC conference too. The attendance this year should be north of 13,000 people, with the majority attende Read more…

By Dan Olds

Hyperion: AI-driven HPC Industry Continues to Push Growth Projections

November 21, 2019

Three major forces – AI, cloud and exascale – are combining to raise the HPC industry to heights exceeding expectations. According to market study results r Read more…

By Doug Black

At SC19: Bespoke Supercomputing for Climate and Weather

November 20, 2019

Weather and climate applications are some of the most important uses of HPC – a good model can save lives, as well as billions of dollars. But many weather an Read more…

By Oliver Peckham

Hazra Retiring from Intel Data Center Group, Successor Not Known

November 20, 2019

Rajeeb Hazra, corporate VP of Intel’s Data Center Group and GM for the Enterprise and Government Group, is retiring after more than 24 years at the company. At this writing, his successor is unknown. An earlier story on... Read more…

By Doug Black

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

Top500: US Maintains Performance Lead; Arm Tops Green500

November 18, 2019

The 54th Top500, revealed today at SC19, is a familiar list: the U.S. Summit (ORNL) and Sierra (LLNL) machines, offering 148.6 and 94.6 petaflops respectively, Read more…

By Tiffany Trader

ScaleMatrix and Nvidia Launch ‘Deploy Anywhere’ DGX HPC and AI in a Controlled Enclosure

November 18, 2019

HPC and AI in a phone booth: ScaleMatrix and Nvidia announced today at the SC19 conference in Denver a joint offering that puts up to 13 petaflops of Nvidia DGX Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This