NSF-funded ‘SLATE’ Platform to Stitch Together Global Science Efforts

September 21, 2017

Sept. 21, 2017 — Today’s most ambitious scientific quests — from the cosmic radiation measurements by the South Pole Telescope to the particle physics of the Large Hadron Collider — are multi-institutional research collaborations requiring computing environments that connect instrumentation, data, and computational resources. Because of the scale of the data and the complexity of this science,  these resources are often distributed among university research computing centers, national high performance computing centers, or commercial cloud providers.  This resource heterogeneity causes scientists to spend more time on the technical aspects of computation than on discoveries and knowledge creation, while computing support staff are required to invest more effort integrating domain specific software with limited applicability beyond the community served.

With Services Layer At The Edge (SLATE), a $4 million project funded by the National Science Foundation, a team from the Enrico Fermi and Computation Institutes at University of Chicago will lead an effort with the Universities of Michigan and Utah to provide technology that simplifies connecting university and laboratory data center capabilities to the national cyberinfrastructure ecosystem. Once installed, SLATE connects local research groups with their far-flung collaborators, allowing central research teams to automate the exchange of data, software and computing tasks among institutions without burdening local system administrators with installation and operation of highly customized scientific computing services. By stitching together these resources, SLATE will also expand the reach of domain-specific “science gateways” and multi-site research platforms.

SLATE works by implementing “cyberinfrastructure as code”, augmenting high bandwidth science networks with a programmable “underlayment” edge platform. This platform hosts advanced services needed for higher-level capabilities such as data and software delivery, workflow services and science gateway components.

SLATE uses best-of-breed data center virtualization components, and where available, software defined networking, to enable automation of lifecycle management tasks by domain experts. As such, it simplifies the creation of scalable platforms that connect research teams, institutions and resources, accelerating science while reducing operational costs and development time. Since SLATE needs only commodity components, it can be used for distributed systems across all data center types and scales, thus enabling creation of ubiquitous, science-driven cyberinfrastructure.

 

At UChicago, the SLATE team will partner with the Research Computing Center and Information Technology Services to help the ATLAS experiment at CERN, the South Pole Telescope and the XENON dark matter search collaborations create the advanced cyberinfrastructure necessary for rapidly sharing data, computer cycles and software between partner institutions.  The resulting systems will provide blueprints for national and international research platforms supporting a variety of science domains.

For example, the SLATE team will work with researchers from the Computation Institute’s Knowledge Lab to develop a hybrid platform that elastically scales computational social science applications between commercial cloud and campus HPC resources. The platform will allow researchers to use their local computational resources with the analytical tools and sensitive data shared through Knowledge Lab’s Cloud Kotta infrastructure, reducing cost and preserving data security.

“SLATE is about creating a ubiquitous cyberinfrastructure substrate for hosting, orchestrating and managing the entire lifecycle of higher level services that power scientific applications that span multiple institutions,” said Rob Gardner, a Research Professor in the Enrico Fermi Institute and Senior Fellow in the Computation Institute. “It clears a pathway for rapidly delivering capabilities to an institution, maximizing the science impact of local research IT investments.”

Many universities and research laboratories use a “Science DMZ” architecture to balance security with the ability to rapidly move large amounts of data in and out of the local network. As sciences from physics to biology to astronomy become more data-heavy, the complexity and need for these subnetworks grows rapidly, placing additional strain on local IT teams.

That stress is further compounded when local scientists join multi-institutional collaborations, often requiring the installation of specialized, domain-specific services for the sharing of compute and data resources.

“Science, ultimately, is a collective endeavor. Most scientists don’t work in a vacuum, they work in collaboration with their peers at other institutions,” said Shawn McKee, director of the Center for Network and Storage-Enabled Collaborative Computational Science at the University of Michigan. “They often need to share not only data, but systems that allow execution of workflows across multiple institutions. Today, it is a very labor-intensive, manual process to stitch together data centers into platforms that provide the research computing environment required by forefront scientific discoveries.”

With SLATE, research groups will be able to fully participate in multi-institutional collaborations and contribute resources to their collective platforms with minimal hands-on effort from their local IT team. When joining a project, the researchers and admins can select a package of software from a cloud-based service — a kind of “app store” — that allows them to connect and work with the other partners.

“Software and data can then be updated automatically by experts from the platform operations and research teams, with little to no assistance required from local IT personnel,” said Joe Breen, Senior IT Architect for Advanced Networking Initiatives at the University of Utah’s Center for High Performance Computing. “While the SLATE platform is designed to work in any data center environment, it will utilize advanced network capabilities, such as software defined overlay networks, when the devices support it.”

By reducing the technical expertise and time demands for participating in multi-institution collaborations, the SLATE platform will be especially helpful to smaller universities that lack the resources and staff of larger institutions and computing centers. The SLATE functionality can also support the development of “science gateways” which make it easier for individual researchers to connect to HPC resources such as the Open Science Grid and XSEDE.

“A central goal of SLATE is to lower the threshold for campuses and researchers to create research platforms within the national cyberinfrastructure,” Gardner said.

Initial partner sites for testing the SLATE platform and developing its architecture include New Mexico State University and Clemson University, where the focus will be creating distributed  cyberinfrastructure in support of large scale bioinformatics and genomics workflows. The project will also work with the Science Gateways Community Institute, an NSF funded Scientific Software Innovation Institute, on SLATE integration to make gateways more powerful and reach more researchers and resources.


Source: Rob Mitchum, University of Chicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This