CAMBRIDGE, United Kingdom and BROOMFIELD, Colo., May 24, 2022 — Quantinuum, the global quantum computing company, today announced the release of InQuanto, a state-of-the-art quantum computational chemistry software platform that makes it easy for computational chemists to experiment with a wide range of quantum algorithms on today’s quantum computers.
InQuanto is available for the first time as a standalone platform to commercial organizations, bringing together the latest quantum computing tools in a single application. It was developed and deployed by Quantinuum’s quantum chemistry team to support collaborations with partners such as BMW, JSR, Nippon Steel Corporation, and TotalEnergies, to explore quantum computing use-cases specific to their industry. They have used it to understand the potential of quantum computing to improve the accuracy of complex molecular and materials simulations in their fields.
InQuanto enables users to mix and match the latest quantum algorithms, advanced subroutines, and chemistry-specific noise mitigation techniques to make the best use of today’s quantum computers. The platform also helps computational chemists to break down larger industrially relevant systems into smaller fragments that can run on today’s small-scale quantum machines. It uses Quantinuum’s open-source Python toolkit TKET to reduce the computational requirements for electronic structure simulations, and maximize performance across the widest range of quantum devices and simulators.
“Quantum computing offers a path to rapid and cost-effective development of new molecules and materials that could unlock novel answers to some of the biggest challenges we face,” said Patrick Moorhead, CEO and Chief Analyst of Moor Insights and Strategy. “The way to ensure progress is to start prototyping now, using real-world use cases, so that methods are tailored to solving actual needs of the industry. InQuanto is built to enable exactly this.”
BMW and Quantinuum have worked together using the InQuanto platform to simulate electrode reactions in hydrogen fuel cells, with the goal of achieving the highest fidelity on today’s machines. The collaboration has focused on modeling the oxygen reduction reaction. It has provided insights into how quantum computers could help with the future design of efficient catalysts and electrodes.
Elvira Shishenina, quantum computing lead at BMW Group New Technologies and Innovation, said, “the path to future progress in materials modelling using quantum computers relies on a deep understanding of both the technology and our applications. Bringing together the fuel cells expertise and highly predictive quantum computing simulations could enhance the new materials development towards zero-physical prototyping.”
Through Quantinuum’s research and development (R&D) collaborations with global partners, the technology now available through InQuanto has led to the achievement of a number of firsts: it explored for the first time the quantification of drug-protein interactions using today’s emerging quantum devices (link). In a collaboration with Nippon Steel Corporation, it proved its capabilities in the simulation of materials such as iron crystals for steel development (link), and in a paper published with TotalEnergies, it was used to model metal organic frameworks for carbon capture (link).
Ilyas Khan, CEO of Quantinuum said: “We are deeply excited about the news today. InQuanto is a perfect example of a product developed with the active support of the leaders across every sector deeply involved in quantum chemistry. We have created a dedicated quantum computing product for computational chemists looking for the bridge between classical computing, which they know well, and quantum techniques, which show so much promise.”
Rei Sakuma, principal researcher of the Materials Informatics Initiative at JSR Corporation, said: “JSR entered into a close partnership with Quantinuum very early on. We participated in the beta testing of InQuanto (formerly EUMEN), and have used it primarily for research and development on novel materials and property prediction. InQuanto is very easy to use, even for researchers and engineers without a deep knowledge of quantum computing. In the future, we would like to use InQuanto not only in research and development but also in actual manufacturing sites, based on the premise of further performance improvement of quantum computers.”
Quantinuum is also partnering with Mitsui & Co. and building on its global industrial reach in order accelerate the InQuanto offering to industrial customers and researchers in Japan and the broader Asia-pacific region.
Simon Toda, General Manager of Digital Technology Strategy Dept., Integrated Digital Strategy Div. at Mitsui & Co., said: “We are extremely excited to be working with Quantinuum, a global pioneer of quantum computing. We believe the InQuanto platform will bring great innovation to the research and development activities in the chemical industry. With our broad business assets and unique position in the industry and region, we are supporting our customers to create new innovative value, together with Quantinuum.”
To learn more on how you can work with Quantinuum to jumpstart your use case exploration with the InQuanto platform, contact us at [email protected]. For more information on InQuanto, visit: https://www.quantinuum.com/products/inquanto. The InQuanto license can include access to the Quantinuum System Model H1, powered by Honeywell, ion trap-based quantum computing hardware.
About Quantinuum
Quantinuum is the world’s largest integrated quantum computing company, formed by the combination of Honeywell Quantum Solutions’ world leading hardware and Cambridge Quantum’s class leading middleware and applications.
Quantinuum employs over 400 people including 300 scientists, at eight sites in the US, Europe, and Japan.
Science led and enterprise driven, Quantinuum accelerates quantum computing and the development of applications across chemistry, cybersecurity, finance, and optimization. Quantinuum’s focus is to create scalable and commercial quantum solutions to solve the world’s most pressing problems, in fields such as energy, logistics, climate change, and health.
Quantinuum’s open-source developer toolkit TKET provides platform-inclusive access to the world’s leading quantum hardware and simulators and enhances the performance of every Quantinuum product, including cybersecurity key-generation platform Quantum Origin, quantum computational chemistry and materials science package InQuanto, and λambeq, Quantinuum’s quantum natural language processing and computational linguistics toolkit.
Quantinuum’s H1 generation quantum computer, Powered by Honeywell, is one of the most advanced in the world and was the first to pass the industry standard quantum volume 4096 benchmark. In March of 2020, Quantinuum (as Honeywell Quantum Solutions) committed to increasing the quantum volume of its commercial H-Series quantum computers by an order of magnitude each year for the subsequent five years.
Source: Quantinuum