Researchers Eye Papermaking Improvements Through HPC

October 6, 2017

Oct. 6, 2017 — With the naked eye, a roll of paper towels doesn’t seem too complicated. But look closely enough, and you’ll see it’s made up of layers of fibers with thousands of intricate structures and contact points. These fluffy fibers are squeezed together before they are printed in patterns, and this resulting texture is key to the paper’s performance.

For a large paper product manufacturer like Procter and Gamble(link is external), which regularly uses high-performance computing to develop its products, simulating this behavior – the way in which those paper fibers contact each other– is complicated and expensive. The preprocessing stage of generating the necessary computational geometry and simulation mesh can be a major bottleneck in product design, wasting time, money and energy.

Lawrence Livermore National Lab researchers are developing a parallel program called p-fiber to help Procter and Gamble simulate the way in which paper fibers contact each other.

To help the company speed up the development process, Lawrence Livermore National Laboratory (LLNL) researcher Will Elmer and his team of programmers focused their efforts on developing a parallel program called p-fiber. Written in Python, the program prepares the fiber geometry and meshing input needed for simulating thousands of fibers, relying on a meshing tool called Cubit, created at Sandia National Laboratories, to generate the mesh for each individual fiber. The p-fiber code has been tested on parallel machines developed at Livermore for mission-critical applications. P-fiber prepares the input for ParaDyn, the parallel-computing version of DYNA3D, a code for modeling and predicting thermomechanical behavior.

The ensuing research, performed for an HPC4Manufacturing (HPC4Mfg) project with the papermaking giant, resulted in the largest multi-scale model of paper products to date, simulating thousands of fibers in ParaDyn with resolution down to the micron scale.

“The problem is larger than the industry is comfortable with, but we have machines with 300,000 cores, so it’s small in comparison to some of the things we run,” Elmer said. “We found that you can save on design cycle time. Instead of having to wait almost a day (19 hours), you can do the mesh generation step in five minutes. You can then run through many different designs quicker.”

Elmer said each individual paper fiber might consist of as many as 3,000 “bricks” or finite elements (components that calculate stress and strain), meaning millions of finite elements had to be accounted for. Elmer and his team generated up to 20 million finite elements, and modeled the most paper fibers in a simulation to date — 15,000. More importantly, they verified that the p-fiber code could scale up to a supercomputer, and, using Lab HPC systems Vulcan and Syrah, they found they could study the scaling behavior of the ParaDyn simulations up to 225 times faster than meshing the fibers one after another.

“Procter and Gamble hasn’t been able to get this kind of simulation, with this many fibers, to run on their system,” Elmer said. “We were able to show there’s a path to get to a representational size of a paper product. Questions like, ‘How much force do you need to tear it?’ can be answered on a supercomputer of the size we’re using. That was a valuable finding, so maybe years down the road, they could be doing these simulations for this kind of work in-house. That’s what HPC4Manufacturing is all about, showing these power players what can be possible in five years.”

Procter and Gamble began using the code on the Lab’s supercomputers in June, providing them with a way to use Paradyn remotely, and to determine if it would improve their design process. The company has the option to license p-fiber.

LLNL benefited from the collaboration as well by learning about how Paradyn scales with massive contact problems, Elmer said, and by creating benchmarks for helping to improve the code. The researchers located and fixed bugs in the code and doubled the speed of Paradyn on Vulcan, which could help with mission-critical applications.

“There’s still a lot of work to be done, but I’m happy with the way this worked,” Elmer said. “I think it’s gotten a lot of visibility and it’s a good example of working with a sophisticated user like Procter and Gamble. It filled out the portfolio of HPC4Manufacturing at that high level. It was a good way to get the Lab engaged in U.S. manufacturing competitiveness.”

Summer intern Avtaar Mahe (who researched gaps in the Paradyn code and scaled up the studies to run on Vulcan) and LLNL researcher Peggy Li (who worked on parallelization and programming) contributed to the effort.

The research was supported by the HPC4Manufacturing program, managed by the Department of Energy’s Advanced Manufacturing Office within the Energy Efficiency and Renewable Energy(link is external) Office. The program, led by LLNL, aims to unite the world-class computing resources and expertise of Department of Energy national laboratories with U.S. manufacturers to deliver solutions that could revolutionize manufacturing.

For more information, see HPC4Mfg.


Source: Lawrence Livermore National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This