Researchers Invent New Way to Stretch Diamond for Better Quantum Bits

November 30, 2023

Nov. 30, 2023 — A future quantum network may become less of a stretch thanks to researchers at the University of Chicago, Argonne National Laboratory and Cambridge University.

Breakthrough by UChicago, Argonne researchers could help pave way for quantum infrastructure. Illustration by Peter Allen.

A team of researchers announced a breakthrough in quantum network engineering: By “stretching” thin films of diamond, they created quantum bits that can operate with significantly reduced equipment and expense. The change also makes the bits easier to control.

The researchers hope the findings, published Nov. 29 in Physical Review X, can make future quantum networks more feasible.

“This technique lets you dramatically raise the operating temperature of these systems, to the point where it’s much less resource-intensive to operate them,” said Alex High, assistant professor with the Pritzker School of Molecular Engineering, whose lab led the study.

Diamond Dilation 

Quantum bits, or qubits, have unique properties that make them of interest to scientists searching for the future of computing networks—for example, they could be made virtually impervious to hacking attempts. But there are significant challenges to work out before it could become a widespread, everyday technology.

One of the chief issues lies within the “nodes” that would relay information along a quantum network. The qubits that make up these nodes are very sensitive to heat and vibrations, so scientists must cool them down to extremely low temperatures to work.

“Most qubits today require a special fridge the size of a room and a team of highly trained people to run it, so if you’re picturing an industrial quantum network where you’d have to build one every five or 10 kilometers, now you’re talking about quite a bit of infrastructure and labor,” explained High.

High’s lab worked with researchers from Argonne National Laboratory, a U.S. Department of Energy national lab affiliated with UChicago, to experiment with the materials these qubits are made from to see if they could improve the technology.

One of the most promising types of qubits is made from diamonds. Known as Group IV color centers, these qubits are known for their ability to maintain quantum entanglement for relatively long periods, but to do so they must be cooled down to just a smidge above absolute zero.

The team wanted to tinker with the structure of the material to see what improvements they could make—a difficult task given how hard diamonds are. But the scientists found that they could “stretch” out the diamond at a molecular level if they laid a thin film of diamond over hot glass. As the glass cools, it shrinks at a slower rate than the diamond, slightly stretching the diamond’s atomic structure—like pavement expands or contracts as the earth cools or warms beneath it, High explained.

Big Impact 

This stretching, though it only moves the atoms apart an infinitesimal amount, has a dramatic effect on how the material behaves.

First, the qubits could now hold their coherence at temperatures up to 4 Kelvin (or -452°F). That’s still very cold, but it can be achieved with less specialized equipment. “It’s an order of magnitude difference in infrastructure and operating cost,” High said.

Secondly, the change also makes it possible to control the qubits with microwaves. Previous versions had to use light in the optical wavelength to enter information and manipulate the system, which introduced noise and meant the reliability wasn’t perfect. By using the new system and the microwaves, however, the fidelity went up to 99%.

It’s unusual to see improvements in both these areas simultaneously, explained Xinghan Guo, a Ph.D. student in physics in High’s lab and first author on the paper.

“Usually if a system has a longer coherence lifetime, it’s because it’s good at ‘ignoring’ outside interference—which means it is harder to control, because it’s resisting that interference,” he said. “It’s very exciting that by making a very fundamental innovation with materials science, we were able to bridge this dilemma.”

“By understanding the physics at play for Group IV color centers in diamond, we successfully tailored their properties to the needs of quantum applications,” said Argonne National Laboratory scientist Benjamin Pingault, also a co-author on the study. “With the combination of prolonged coherent time and feasible quantum control via microwaves, the path to developing diamond-based devices for quantum networks is clear for tin vacancy centres,” added Mete Atature, a professor of physics with Cambridge University and a co-author on the study.

The researchers used the Pritzker Nanofabrication Facility and Materials Research Science and Engineering Center at UChicago.

Other study authors included Zixi Li, Benchen Huang, Yu Jin, Tianle Lu, Prof. Giulia Galli and Prof. David Awschalom with the University of Chicago; Nazar Delegan and Benjamin Pingault with Argonne National Laboratory; and Alexander Stramma (co-first author), William Roth, Ryan Parker, Jesus Arjona Martinez, Noah Shofer, Cathryn Michales, Carola Purser, Martin Appel, Evgeny Alexeev, and Andrea Ferrari with the University of Cambridge.

Citation: “Microwave-based quantum control and coherence protection of tin-vacancy spin qubits in a strain-tuned diamond membrane heterostructure.” Guo et al, Physical Review X, Nov. 29, 2023.

Funding: Air Force Office of Scientific Research, U.S. Department of Energy Q-NEXT National Quantum Information Science Research Center, ERC Advanced Grant PEDASTAL, EU Quantum Flagship, National Science Foundation, EPSRC/NQIT, General Sir John Monash Foundation and G-research, Winton Programme and EPSRC DTP, EU Horizon 2020 Marie Sklodowska-Curie Grant.


Source: Louise Lerner, UChicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire