Researchers Use LRZ HPC Resources to Perform Largest-ever Supersonic Turbulence Simulation

January 12, 2021

Jan. 12, 2021 — Through the centuries, scientists and non-scientists alike have looked at the night sky and felt excitement, intrigue, and overwhelming mystery while pondering questions about how our universe came to be, and how humanity developed and thrived in this exact place and time. Early astronomers painstakingly studied stars’ subtle movements in the night sky to try and determine how our planet moves in relation to other celestial bodies. As technology has increased, so too has our understanding of how the universe works and our relative position within it.

What remains a mystery, however, is a more detailed understanding of how stars and planets formed in the first place. Astrophysicists and cosmologists understand that the movement of materials across the interstellar medium (ISM) helped form planets and stars, but how this complex mixture of gas and dust–the fuel for star formation–moves across the universe is even more mysterious.

Turbulence shaping the interstellar medium. The image shows a slice through turbulent gas in the world’s highest-resolution simulation of turbulence, published in Nature Astronomy. CREDIT Federrath et al. Nature Astronomy. DOI: 10.1038/s41550-020-01282-z

To help better understand this mystery, researchers have turned to the power of high-performance computing (HPC) to develop high-resolution recreations of phenomena in the galaxy. Much like several terrestrial challenges in engineering and fluid dynamics research, astrophysicists are focused on developing a better understanding of the role of turbulence in helping shape our universe.

Over the last several years, a multi-institution collaboration being led by Australian National University Associate Professor Christoph Federrath and Heidelberg University Professor Ralf Klessen has been using HPC resources at the Leibniz Supercomputing Centre (LRZ) in Garching near Munich to study turbulence’s influence on galaxy formation. The team recently revealed the so-called “sonic scale” of astrophysical turbulence–marking the transition moving from supersonic to subsonic speeds (faster or slower than the speed of sound, respectively)–creating the largest-ever simulation of supersonic turbulence in the process. The team published its research in Nature Astronomy.

Many scales in a simulation

To simulate turbulence in their research, Federrath and his collaborators needed to solve the complex equations of gas dynamics representing a wide variety of scales. Specifically, the team needed to simulate turbulent dynamics on both sides of the sonic scale in the complex, gaseous mixture travelling across the ISM. This meant having a sufficiently large simulation to capture these large-scale phenomena happening faster than the speed of sound, while also advancing the simulation slowly and with enough detail to accurately model the smaller, slower dynamics taking place at subsonic speeds.

“Turbulent flows only occur on scales far away from the energy source that drives on large scales, and also far away from the so-called dissipation (where the kinetic energy of the turbulence turns into heat) on small scales” Federrath said. “For our particular simulation, in which we want to resolve both the supersonic and the subsonic cascade of turbulence with the sonic scale in between, this requires at least 4 orders of magnitude in spatial scales to be resolved.”

In addition to scale, the complexity of the simulations is another major computational challenge. While turbulence on Earth is one of the last major unsolved mysteries of physics, researchers who are studying terrestrial turbulence have one major advantage–the majority of these fluids are incompressible or only mildly compressible, meaning that the density of terrestrial fluids stays close to constant. In the ISM, though, the gaseous mix of elements is highly compressible, meaning researchers not only have to account for the large range of scales that influences turbulence, they also have to solve equations throughout the simulation to know the gases’ density before proceeding.

Understanding the influence that density near the sonic scale plays in star formation is important for Federrath and his collaborators, because modern theories of star formation suggest that the sonic scale itself serves as a “Goldilocks zone” for star formation. Astrophysicists have long used similar terms to discuss how a planet’s proximity to a star determines its ability to host life, but for star formation itself, the sonic scale strikes a balance between the forces of turbulence and gravity, creating the conditions for stars to more easily form. Scales larger than the sonic scale tend to have too much turbulence, leading to sparse star formation, while in smaller, subsonic regions, gravity wins the day and leads to localized clusters of stars forming.

In order to accurately simulate the sonic scale and the supersonic and subsonic scales on either side, the team worked with LRZ to scale its application to more than 65,000 compute cores on the SuperMUC HPC system. Having so many compute cores available allowed the team to create a simulation with more than 1 trillion resolution elements, making it the largest-ever simulation of its kind.

“With this simulation, we were able to resolve the sonic scale for the first time,” Federrath said. “We found its location was close to theoretical predictions, but with certain modifications that will hopefully lead to more refined star formation models and more accurate predictions of star formation rates of molecular clouds in the universe. The formation of stars powers the evolution of galaxies on large scales and sets the initial conditions for planet formation on small scales, and turbulence is playing a big role in all of this. We ultimately hope that this simulation advances our understanding of the different types of turbulence on Earth and in space.”

Cosmological collaborations and computational advancements

“I see our mission as being the interface between the ever-increasing complexity of the HPC architectures, which is a burden on the application developers, and the scientists, which don’t always have the right skill set for using HPC resource in the most effective way,” said Dr. Luigi Iapichino, Head of LRZ’s AstroLab and a co-author on the Nature Astronomy publication. “From this viewpoint, collaborating with Christoph was quite simple because he is very skilled in programming for HPC performance. I am glad that in this kind of collaborations, application specialists are often full-fledged partners of researchers, because it stresses the key role centres’ staffs play in the evolving HPC framework.”

Click here for the full post.


Source: GAUSS CENTRE FOR SUPERCOMPUTING

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire