SDSC Achieves Record Performance in Seismic Simulations With Intel

March 7, 2017

March 7 — Researchers at the San Diego Supercomputer Center (SDSC) at the University of California San Diego have developed a new seismic software package with Intel Corporation that has enabled the fastest seismic simulation to-date, as the two organizations collaborate on ways to better predict ground motions to save lives and minimize property damage.

The latest simulations, which mimic possible large-scale seismic activity in the southern California region, were done using a new software system called EDGE, for Extreme-Scale Discontinuous Galerkin Environment. The largest simulation used 612,000 Intel Xeon Phi processor cores of the new Cori Phase II supercomputer at the National Energy Research Scientific Computing Center (NERSC), the primary scientific computing facility for the Office of Science in the U.S. Department of Energy (DOE).

SDSC’s ground-breaking performance of 10.4 PFLOPS (Peta FLoating-point Operations Per Second, or one quadrillion calculations per second) surpassed the previous seismic record of 8.6 PFLOPS conducted on China’s Tianhe-2 supercomputer. Through efficient utilization of the latest and largest supercomputers, seismologists are now able to increase the frequency content of the simulated seismic wave field.

Obtaining higher frequencies is a key to predict ground motions relevant for common dwellings in conducting earthquake research. SDSC and Intel researchers also used the DOE’s Theta supercomputer at the Argonne National Laboratory as part of the year-long project.

“In addition to using the entire Cori Phase II supercomputer, our research also showed a substantial gain in efficiency in using the new software,” said Alex Breuer, a postdoctoral researcher from SDSC’s High Performance Geocomputing Laboratory (HPGeoC) and lead author of the paper, to be presented in June at the International Super Computing (ISC) High Performance conference in Frankfurt, Germany. “Researchers will be able to run about two to almost five times the number of simulations using EDGE, saving time and reducing cost.”

A second HPGeoC paper submitted and accepted for the ISC High Performance conference covers a new study of the AWP-ODC software that has been used by the Southern California Earthquake Center (SCEC) for years. The software was optimized to run in large-scale for the first time on the latest generation of Intel data center processors, called Intel Xeon Phi x200.

These simulations, also using NERSC’s Cori Phase II supercomputer, attained competitive performance to an equivalent simulation on the entire GPU-accelerated Titan supercomputer. Titan is located at the DOE’s Oak Ridge National Laboratory and has been the resource used for the largest AWP-ODC simulations in recent years. Additionally, the software obtained high performance on Stampede-KNL at the Texas Advanced Computing Center at The University of Texas at Austin.

Intel Parallel Computing Center at SDSC

Both research projects are part of a collaboration announced in early 2016 under which Intel opened a computing center at SDSC to focus on seismic research, including the ongoing development of computer-based simulations that can be used to better inform and assist disaster recovery and relief efforts.

The Intel Parallel Computing Center (Intel PCC) continues an interdisciplinary collaboration between Intel, SDSC, and SCEC, one of the largest open research collaborations in geoscience. In addition to UC San Diego, the Intel PCC at SDSC includes researchers from the University of Southern California (USC), San Diego State University (SDSU), and the University of California Riverside (UCR).

The Intel PCC program provides funding to universities, institutions, and research labs to modernize key community codes used across a wide range of disciplines to run on current state-of-the-art parallel architectures. The primary focus is to modernize applications to increase parallelism and scalability through optimizations that leverage cores, caches, threads, and vector capabilities of microprocessors and coprocessors.

“Research and results such as the massive seismic simulation demonstrated by the SDSC/Intel team are tremendous for their contributions to science and society,” said Joe Curley, senior director of Code Modernization Organization at Intel Corporation. “Equally, this work also demonstrates the benefit to society of developing modern applications to exploit power-efficient and highly parallel CPU technology.”

Such detailed computer simulations allow researchers to study earthquake mechanisms in a virtual laboratory. “These two studies open the door for the next-generation of seismic simulations using the latest and most sophisticated software,” said Yifeng Cui, founder of the HPGeoC at SDSC and director of the Intel PCC at SDSC. “Going forward, we will use the new codes widely for some of the most challenging tasks at SCEC.”

The multi-institution study which led to the record results includes Breuer and Cui; as well as Josh Tobin, a Ph.D. student in UC San Diego’s Department of Mathematics; Alexander Heinecke, a research scientist at Intel Labs; and Charles Yount, a principal engineer at Intel Corporation.

The titles of the respective presentations and publications are “EDGE: Extreme Scale Fused Seismic Simulations with the Discontinuous Galerkin Method” and “Accelerating Seismic Simulations using the Intel Xeon Phi Knights Landing Processor”. The work was supported by the National Science Foundation (NSF), SCEC, and the Intel PCC initiative. Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

About SDSC 

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and both are part of the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ORNL Helps Identify Challenges of Extremely Heterogeneous Architectures

March 21, 2019

Exponential growth in classical computing over the last two decades has produced hardware and software that support lightning-fast processing speeds, but advancements are topping out as computing architectures reach thei Read more…

By Laurie Varma

Interview with 2019 Person to Watch Jim Keller

March 21, 2019

On the heels of Intel's reaffirmation that it will deliver the first U.S. exascale computer in 2021, which will feature the company's new Intel Xe architecture, we bring you our interview with our 2019 Person to Watch Jim Keller, head of the Silicon Engineering Group at Intel. Read more…

By HPCwire Editorial Team

What’s New in HPC Research: TensorFlow, Buddy Compression, Intel Optane & More

March 20, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Insurance: Where’s the Risk?

Insurers are facing extreme competitive challenges in their core businesses. Property and Casualty (P&C) and Life and Health (L&H) firms alike are highly impacted by the ongoing globalization, increasing regulation, and digital transformation of their client bases. Read more…

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

At GTC: Nvidia Expands Scope of Its AI and Datacenter Ecosystem

March 19, 2019

In the high-stakes race to provide the AI life-cycle solution of choice, three of the biggest horses in the field are IBM, Intel and Nvidia. While the latter is only a fraction of the size of its two bigger rivals, and has been in business for only a fraction of the time, Nvidia continues to impress with an expanding array of new GPU-based hardware, software, robotics, partnerships and... Read more…

By Doug Black

Nvidia Debuts Clara AI Toolkit with Pre-Trained Models for Radiology Use

March 19, 2019

AI’s push into healthcare got a boost yesterday with Nvidia’s release of the Clara Deploy AI toolkit which includes 13 pre-trained models for use in radiolo Read more…

By John Russell

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Quick Take: Trump’s 2020 Budget Spares DoE-funded HPC but Slams NSF and NIH

March 12, 2019

U.S. President Donald Trump’s 2020 budget request, released yesterday, proposes deep cuts in many science programs but seems to spare HPC funding by the Depar Read more…

By John Russell

Nvidia Wins Mellanox Stakes for $6.9 Billion

March 11, 2019

The long-rumored acquisition of Mellanox came to fruition this morning with GPU chipmaker Nvidia’s announcement that it has purchased the high-performance net Read more…

By Doug Black

Optalysys Rolls Commercial Optical Processor

March 7, 2019

Optalysys, Ltd., a U.K. company seeking to advance it optical co-processor technology, moved a step closer this week with the unveiling of what it claims is th Read more…

By George Leopold

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This