SDSC Achieves Record Performance in Seismic Simulations With Intel

March 7, 2017

March 7 — Researchers at the San Diego Supercomputer Center (SDSC) at the University of California San Diego have developed a new seismic software package with Intel Corporation that has enabled the fastest seismic simulation to-date, as the two organizations collaborate on ways to better predict ground motions to save lives and minimize property damage.

The latest simulations, which mimic possible large-scale seismic activity in the southern California region, were done using a new software system called EDGE, for Extreme-Scale Discontinuous Galerkin Environment. The largest simulation used 612,000 Intel Xeon Phi processor cores of the new Cori Phase II supercomputer at the National Energy Research Scientific Computing Center (NERSC), the primary scientific computing facility for the Office of Science in the U.S. Department of Energy (DOE).

SDSC’s ground-breaking performance of 10.4 PFLOPS (Peta FLoating-point Operations Per Second, or one quadrillion calculations per second) surpassed the previous seismic record of 8.6 PFLOPS conducted on China’s Tianhe-2 supercomputer. Through efficient utilization of the latest and largest supercomputers, seismologists are now able to increase the frequency content of the simulated seismic wave field.

Obtaining higher frequencies is a key to predict ground motions relevant for common dwellings in conducting earthquake research. SDSC and Intel researchers also used the DOE’s Theta supercomputer at the Argonne National Laboratory as part of the year-long project.

“In addition to using the entire Cori Phase II supercomputer, our research also showed a substantial gain in efficiency in using the new software,” said Alex Breuer, a postdoctoral researcher from SDSC’s High Performance Geocomputing Laboratory (HPGeoC) and lead author of the paper, to be presented in June at the International Super Computing (ISC) High Performance conference in Frankfurt, Germany. “Researchers will be able to run about two to almost five times the number of simulations using EDGE, saving time and reducing cost.”

A second HPGeoC paper submitted and accepted for the ISC High Performance conference covers a new study of the AWP-ODC software that has been used by the Southern California Earthquake Center (SCEC) for years. The software was optimized to run in large-scale for the first time on the latest generation of Intel data center processors, called Intel Xeon Phi x200.

These simulations, also using NERSC’s Cori Phase II supercomputer, attained competitive performance to an equivalent simulation on the entire GPU-accelerated Titan supercomputer. Titan is located at the DOE’s Oak Ridge National Laboratory and has been the resource used for the largest AWP-ODC simulations in recent years. Additionally, the software obtained high performance on Stampede-KNL at the Texas Advanced Computing Center at The University of Texas at Austin.

Intel Parallel Computing Center at SDSC

Both research projects are part of a collaboration announced in early 2016 under which Intel opened a computing center at SDSC to focus on seismic research, including the ongoing development of computer-based simulations that can be used to better inform and assist disaster recovery and relief efforts.

The Intel Parallel Computing Center (Intel PCC) continues an interdisciplinary collaboration between Intel, SDSC, and SCEC, one of the largest open research collaborations in geoscience. In addition to UC San Diego, the Intel PCC at SDSC includes researchers from the University of Southern California (USC), San Diego State University (SDSU), and the University of California Riverside (UCR).

The Intel PCC program provides funding to universities, institutions, and research labs to modernize key community codes used across a wide range of disciplines to run on current state-of-the-art parallel architectures. The primary focus is to modernize applications to increase parallelism and scalability through optimizations that leverage cores, caches, threads, and vector capabilities of microprocessors and coprocessors.

“Research and results such as the massive seismic simulation demonstrated by the SDSC/Intel team are tremendous for their contributions to science and society,” said Joe Curley, senior director of Code Modernization Organization at Intel Corporation. “Equally, this work also demonstrates the benefit to society of developing modern applications to exploit power-efficient and highly parallel CPU technology.”

Such detailed computer simulations allow researchers to study earthquake mechanisms in a virtual laboratory. “These two studies open the door for the next-generation of seismic simulations using the latest and most sophisticated software,” said Yifeng Cui, founder of the HPGeoC at SDSC and director of the Intel PCC at SDSC. “Going forward, we will use the new codes widely for some of the most challenging tasks at SCEC.”

The multi-institution study which led to the record results includes Breuer and Cui; as well as Josh Tobin, a Ph.D. student in UC San Diego’s Department of Mathematics; Alexander Heinecke, a research scientist at Intel Labs; and Charles Yount, a principal engineer at Intel Corporation.

The titles of the respective presentations and publications are “EDGE: Extreme Scale Fused Seismic Simulations with the Discontinuous Galerkin Method” and “Accelerating Seismic Simulations using the Intel Xeon Phi Knights Landing Processor”. The work was supported by the National Science Foundation (NSF), SCEC, and the Intel PCC initiative. Intel, Xeon, and Xeon Phi are trademarks or registered trademarks of Intel Corporation in the U.S. and other countries.

About SDSC 

As an Organized Research Unit of UC San Diego, SDSC is considered a leader in data-intensive computing and cyberinfrastructure, providing resources, services, and expertise to the national research community, including industry and academia. Cyberinfrastructure refers to an accessible, integrated network of computer-based resources and expertise, focused on accelerating scientific inquiry and discovery. SDSC supports hundreds of multidisciplinary programs spanning a wide variety of domains, from earth sciences and biology to astrophysics, bioinformatics, and health IT. SDSC’s Comet joins the Center’s data-intensive Gordon cluster, and both are part of the National Science Foundation’s XSEDE (Extreme Science and Engineering Discovery Environment) program.


Source: SDSC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

Intel, Micron to Go Their Separate 3D NAND Ways

January 10, 2018

The announcement on Monday (Jan. 8) that Intel and Micron have decided to “update” – that is, end – their long-term joint development partnership for 3D NAND technology is nearly as interesting an exercise in pub Read more…

By Doug Black

HPE Extreme Performance Solutions

The Living Heart Project Wins Three Prestigious Awards for HPC Simulation

Imagine creating a treatment plan for a patient on the other side of the world, or testing a drug without ever putting subjects at risk. Read more…

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect application performance by 10-30 percent. The patch makes any call fro Read more…

By Rosemary Francis

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Independent Hyperion Research Will Chart its Own Course

December 19, 2017

Hyperion Research, formerly the HPC research and consulting practice within IDC, has become an independent company with Earl Joseph, the long-time leader of the Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This