TACC Donates First-of-Its-Kind Magnum Switch to Computer History Museum

July 12, 2018

July 12, 2018 — Supercomputers are the sports cars of the technology world: fast, glamorous and expensive.

Credit: Dag Spicer, Computer History Museum, Mountain View, CA

This might be why Dag Spicer, senior curator at the Computer History Museum, finds them fascinating. Recently, Spicer and his team in Mountain View, CA, unanimously accepted a piece of TACC’s history into their permanent historical collection — sealing its place as a milestone in computing.

“We’re always searching around the world for new, interesting, and important computing objects,” Spicer said in a recent interview, “and TACC’s Sun Microsystems 2007 Magnum switch was a critical part of high-performance computing (HPC) at that time in history. The TACC switch was the largest of its class and is an example of Infiniband technology, of which we had few examples.”

With more than 100,000 objects in its collection, the Computer History Museum is home to the largest collection of computers and related materials in the world.

The Sun Microsystems Magnum Infiniband switch was part of TACC’s Ranger supercomputer system, in effect connecting the tens of thousands of Ranger’s processors together into a blazingly fast high-speed interconnected network. Specifically, Ranger was a network of 62,976 cores packed into 15,744 quad-core microprocessors.

In 2008, the Ranger system was the first supercomputer in open science to approach the petascale performance mark at 579.4 teraflops — that’s one thousand million million floating-point operations per second. At the time, the $59 million award to build the system was the largest single National Science Foundation (NSF) grant ever received by The University of Texas at Austin.

Ranger debuted as the fifth most powerful computer in the world on the June 2008 Top 500 list, and it was hailed by the NSF as the most powerful supercomputing system in the world for open science research — up to 50,000 times more powerful than a PC at the time.

Everything about Ranger was big — the idea, the award, the system, the desire to do bigger and better science.

The technology that goes into a supercomputer is cutting-edge and impressive, but more importantly, supercomputers help solve the grand challenge problems facing society today and in the future ― problems such as global climate change, water resource management, new energy sources, natural disasters, new materials and manufacturing processes, tissue and organ engineering, patient-specific medical therapies, and drug design.

These issues cannot be addressed or overcome without computing modeling and simulation on HPC systems like Ranger and its follow-on systems.

Founded in 1979 in Boston, but later moved to Mountain View in 1996, the Computer History Museum uses their collections to teach people aged five to 95 about computing and the impact it has on nearly aspect of their daily lives. “We talk about the social consequences of computers and we explain the objects in the context of their own time,” Spicer says.

For example, the museum has the world’s first disk drive made by IBM in 1956. It held only five million 6-bit characters (about 3.75 megabytes), which is equivalent to a single,short song on an iPod. However, at the time, IBM’s goal was to use this disk drive to replace punched cards. Until the mid-1970s, most computer access was via punched cards. “Context is everything,” Spicer says.

“Behind nearly every artifact, exhibit, and pioneering effort is a story that the museum is dedicated to understand and tell,” says Gordon Bell, a pioneer in HPC and parallel computing and co-founder of the museum. “It’s the world’s only institution dedicated to the industry-wide preservation of information processing devices and documentation.”

The other co-founder is Ken Olson, founder of Digital Equipment Corporation. The company was a major American company in the computer industry from the 1950s to the 1990s and specialized in making minicomputers.

In some ways, the museum founders and curators like to think 500 years into the future. “The last 70 years we’ve progressed from mechanical calculators to computers so fast they almost transcend human understanding,” Spicer says. “And yet for the types of problems they are being asked to solve, they are never fast enough. What can we expect in just the next 20 years, let alone the next century? CHM exists to keep an object-based record of this stunning progress.”

Exascale computing, a billion billion calculations per second, is not a final goal in and of itself. Rather it is another stage in what has been a steady rocket blast in computing power since the 1970s. Such capacity represents a thousandfold increase over Ranger, the first ‘Path to Petascale’ computer that came into operation in 2008. Experts say that the open science community may hit the Exascale era by 2021.

“I’m hoping we’ll do a new exhibit here when that time comes,” Spicer concludes, “as it will mark a milestone unimaginable to the original inventors of the computer and the culmination of decades of careful, incremental change. In science, computing power equals discovery. Exascale computing will give us new, thrilling new ways of seeing the world and of solving the critical problems that humanity is facing right now.”


Source: Faith Singer-Villalobos, TACC

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire