UChicago Scientists Make New Discovery Proving Entanglement Is Responsible for Computational Hardness In Quantum Systems

July 27, 2023

July 27, 2023 — For decades, scientists have been trying to solve the mystery of what makes quantum computers more powerful than classical computers. The origins of this quest can be traced all the way to Albert Einstein who famously called quantum mechanical entanglement “spooky action at a distance”. Now in a groundbreaking paper published in the Physical Review Letters, a team of scientists led by Assistant Professor William Fefferman from the University of Chicago’s Department of Computer Science have found a computational problem in which entanglement is directly responsible for a dramatic quantum computational speedup over any efficient classical algorithm.

Visualization of entanglement. Credit: UChicago.

Fefferman, along with lead Ph.D. student Soumik Ghosh, IBM researcher Abhinav Deshpande (who Fefferman co-advised at the University of Maryland), University of Maryland postdoc Dominik Hangleiter and University of Maryland/NIST researcher Alexey Gorshkov, debuted a problem in their paper titled “Complexity phase transitions generated by entanglement” that pinpoints two things: there is a provable quantum speedup over any classical computer, and entanglement is causing the speedup in this particular problem.

Since the early 90’s, we have had theoretical evidence that quantum computers can solve problems that are too difficult for today’s classical computers. One specific example that scientists continue to look at is Shor’s algorithm, which says quantum computers can take incredibly large numbers (think ten billion) and quickly break them into their prime factors. The foundations of modern cryptography that we use on the Internet is based on this being a hard problem to solve; so if large scale quantum computers are built, then the basis of cryptography as we know it would be compromised.

However, Shor’s algorithm is still a theoretical result because large enough and perfect enough quantum computers have not yet been built.

“Right now we are in the era of NISQ — which stands for noisy intermediate scale quantum computing,” said Ghosh. “Some companies have designed certain types of quantum computers, but one defining feature is that they are a bit noisy. Today’s quantum computers are believed to be just slightly more powerful than our best classical computers, so it’s becoming more significant to sharpen that boundary between the two.”

In the same way that classical computers are made up of bits, quantum computers are made of individual components called qubits. As Ghosh explained, today’s qubits are noisy, making them too imperfect to be efficient. A quantum computer would need hundreds of thousands of noiseless qubits to solve the near-impossible problems facing modern computers. While places like UChicago are making strides toward building large scale quantum computers that can test these theories, we don’t currently have devices capable of doing so.

The authors consider a special type of quantum states — known as k-regular graph states — with certain modifications that isolate out entanglement as the primary causal factor for hardness of classical simulation.

There is still plenty that scientists don’t understand about the basic foundations of quantum computing that make it hard to move forward in the field. From a first principle standpoint, certain questions need to be answered: Why is quantum computing so powerful? Why does Shor’s algorithm work? What quantum properties is it using that causes these speedups? After years of research attempting to better understand these issues, this work gives an example of a quantum system for which entanglement can be identified as the clearcut answer.

“Entanglement is a fundamental property of quantum systems, and it’s a property that we think is very different from anything that happens in the classical world,” Fefferman explained. “Furthermore, there’s always been an intuition that entanglement is one of the root causes of these quantum speedups. It’s an important contributor to the power of quantum computers, but it wasn’t totally clear that entanglement was the sole cause. That’s what our paper is trying to address.”

Entanglement is a complex and largely misunderstood phenomenon that scientists have been trying to understand for the last hundred years. Einstein, for instance, was troubled by entanglement and died trying to give a classical explanation. In essence, if you have two entangled quantum particles that are separated by a distance, no matter how far, what happens to one particle can simultaneously affect the behavior of the other particle. Abstractly, if you have a large number of particles– or qubits as the basic unit of quantum information– and you want to understand the state of this entire system, the idea of entanglement implies you won’t get any real information by looking at just one qubit; you have to look at the interactions between all of the qubits to understand the state of subsets within the system.

Assistant Professor William Fefferman.

The problem the team presented in the paper is not useful in the same sense that Shor’s algorithm is, but it can be mathematically described and is meaningful to quantum theory. The key point is that entanglement can be seen to be the root cause of the computational speedup.

“We can talk about the same computational problem with a little bit of entanglement, and then a little bit more, and so on,” said Fefferman. “The exciting part is that when this entanglement reaches a certain threshold, we go from an easy problem for a classical computer to a provably hard problem. Entanglement seems to be causing the increased difficulty and quantum speedup. We’ve never been able to show that in a problem like Shor’s algorithm.”

This research is part of the first steps in the broader context of pinpointing quantum speedups.

“The next step is trying to generalize this toy model to more practical systems of quantum computation,” said Ghosh. “We want to be able to understand what is causing speedups for the types of quantum computers that people are designing in real life and the type of processes that will be run using those computers.”


Source: UChicago

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of what it is like to orbit and enter a black hole. And yes, it c Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire