University of Paderborn Researchers Leverage Hawk Supercomputer for Advances in Solar Cell Research

February 27, 2024

Feb. 27, 2024 — Solar energy is one of the most promising, widely adopted renewable energy sources, but the solar cells that convert light into electricity remains a challenge. Scientists have turned to the High-Performance Computing Center Stuttgart to understand how strategically designing imperfections in the system could lead to more efficient energy conversion.

This image shows a visualization of the calculated exciton transfer from an upper tetracene layer of a solar cell to the silicon substrate. The electron is shown in blue, and the electron hole in red. Image credit: Marvin Krenz, University of Paderborn.

Since the turn of the century, Germany has made major strides in solar energy production. In 2000, the country generated less than one percent of its electricity with solar power, but by 2022, that figure had risen to roughly 11 percent. A combination of lucrative subsidies for homeowners and technological advances to bring down the costs of solar panels helped drive this growth.

With global conflicts making oil and natural gas markets less reliable, solar power stands to play an even larger role in helping meet Germany’s energy needs in the years to come. While solar technology has come a long way in the last quarter century, the solar cells in contemporary solar panels still only operate at about 22 percent efficiency on average.

In the interest of improving solar cell efficiency, a research team led by Prof. Wolf Gero Schmidt at the University of Paderborn has been using high-performance computing (HPC) resources at the High-Performance Computing Center Stuttgart (HLRS) to study how these cells convert light to electricity. Recently, the team has been using HLRS’s Hawk supercomputer to determine how designing certain strategic impurities in solar cells could improve performance.

“Our motivation on this is two-fold: at our institute in Paderborn, we have been working for quite some time on a methodology to describe microscopically the dynamics of optically excited materials, and we have published a number of pioneering papers about that topic in recent years,” Schmidt said. “But recently, we got a question from collaborators at the Helmholtz Zentrum Berlin who were asking us to help them understand at a fundamental level how these cells work, so we decided to use our method and see what we could do.”

Recently, the team used Hawk to simulate how excitons — a pairing of an optically exited electron and the electron “hole” it leaves behind — can be controlled and moved within solar cells so more energy is captured. In its research, the team made a surprising discovery: it found that certain defects to the system, introduced strategically, would improve exciton transfer rather than impede it. The team published its results in Physical Review Letters.

Designing Solar Cells for More Efficient Energy Conversion

Most solar cells, much like many modern electronics, are primarily made of silicon. After oxygen, it is the second most abundant chemical element on Earth in terms of mass. Around 15 percent of our entire planet consists of silicon, including 25.8 percent of the Earth’s crust. The basic material for climate-friendly energy production is therefore abundant and available almost everywhere.

However, this material does have certain drawbacks for capturing solar radiation and converting it into electricity. In traditional, silicon-based solar cells, light particles, called photons, transfer their energy to available electrons in the solar cell. The cell then uses those excited electrons to create an electrical current.

The problem? High-energy photons provide far more energy than what can be transformed into electricity by silicon. Violet light photons, for instance, have about three electron volts (eV) of energy, but silicon is only able to convert about 1.1 eV of that energy into electricity. The rest of the energy is lost as heat, which is both a missed opportunity for capturing additional energy and reduces solar cell performance and durability.

In recent years, scientists have started to look for ways to reroute or otherwise capture some of that excess energy. While several methods are being investigated, Schmidt’s team has focused on using a molecule-thin layer of tetracene, another organic semiconductor material, as the top layer of a solar cell.

Unlike silicon, when tetracene receives a high-energy photon, it splits the resulting excitons into two lower-energy excitations in a process known as singlet fission. By placing a carefully designed interface layer between tetracene and silicon, the resulting low-energy excitons can be transferred from tetracene into silicon, where most of their energy can be converted into electricity.

Utility in Imperfection

Whether using tetracene or another material to augment traditional solar cells, researchers have focused on trying to design the perfect interface between constituent parts of a solar cell to provide the best-possible conditions for exciton transfer.

Schmidt and his team use ab initio molecular dynamics (AIMD) simulations to study how particles interact and move within a solar cell. With access to Hawk, the team is able to do computationally expensive calculations to observe how several hundred atoms and their electrons interact with one another. The team uses AIMD simulations to advance time at femtosecond intervals to understand how electrons interact with electron holes and other atoms in the system. Much like other researchers, the team sought to use its computational method to identify imperfections in the system and look for ways to improve on it.

In search of the perfect interface, they found a surprise: that an imperfect interface might be better for exciton transfer. In an atomic system, atoms that are not fully saturated, meaning they are not completely bonded to other atoms, have so-called “dangling bonds.” Researchers normally assume dangling bonds lead to inefficiencies in electronic interfaces, but in its AIMD simulations, the team found that silicon dangling bonds actually fostered additional exciton transfer across the interface.

“Defect always implies that there is some unwanted thing in a system, but that is not really true in our case,” said Prof. Uwe Gerstmann, a University of Paderborn professor and collaborator on the project. “In semiconductor physics, we have already strategically used defects that we call donors or acceptors, which help us build diodes and transistors. So strategically, defects can certainly help us build up new kinds of technologies.”

Dr. Marvin Krenz, a postdoctoral researcher at the University of Paderborn and lead author on the team’s paper, pointed out the contradiction in the team’s findings compared to the current state of solar cell research. “It is an interesting point for us that the current direction of the research was going toward designing ever-more perfect interfaces and to remove defects at all costs. Our paper might be interesting for the larger research community because it points out a different way to go when it comes to designing these systems,” he said.

Armed with this new insight, the team now plans to use its future computing power to design interfaces that are perfectly imperfect, so to speak. Knowing that silicon dangling bonds can help foster this exciton transfer, the team wants to use AIMD to reliably design an interface with improved exciton transfer. For the team, the goal is not to design the perfect solar cell overnight, but to continue to make subsequent generations of solar technology better.

“I feel confident that we will continue to gradually improve solar cell efficiency over time,” Schmidt said. “Over the last few decades, we have seen an average annual increase in efficiency of around 1% across the various solar cell architectures. Work such as the one we have carried out here suggests that further increases can be expected in the future. In principle, an increase in efficiency by a factor of 1.4 is possible through the consistent utilization of singlet fission.”


Source: Eric Gedenk, GCS

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos  of what it is like to orbit and enter a black hole. And yes, it Read more…

2024 Winter Classic: Meet the Mentors Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the mentor interviews and placed them in this single page round-up. Meet the HPE Mentors The latest installment of the 2024 Winter Classic Studio Update S Read more…

2024 Winter Classic: The Complete Team Round-up

May 6, 2024

To make navigating easier, we have compiled a collection of all the teams and placed them in this single page round-up. Meet Team Lobo This is the other team from University of New Mexico, since there are two, right? T Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hopes to fill a big software gap with an agreement to acquire R Read more…

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos  of Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire