Scaling a read-intensive, low-latency file system to 10M+ IOPs

By Amazon Web Services

November 4, 2021

Many shared file systems are used in supporting read-intensive applications. These applications typically exploit copies of datasets whose authoritative copy resides somewhere else. One application of a read-heavy application is financial backtesting. For small datasets, in-memory databases and caching techniques can yield impressive results. However, low latency flash-based scalable shared file systems can provide both massive IOPs and bandwidth. They’re also easy to adopt because of their use of a file-level abstraction.

In this post, I’ll share how to easily create and scale a shared, distributed POSIX compatible file system that performs at local NVMe speeds for files opened read-only.  For this configuration, I’ll be using i3en.24xlarge Amazon EC2 instances on AWS. Figure 1 shows the basic architecture, in which there are N file servers acting as file system clients and application servers, as well as one or more remote clients that can access the file system, but which don’t have high-speed local access.

Figure 1: High level architecture of the file system.

In general, this architecture is designed for any type of workflow where some amount of data is pushed to the file system via a single writer and with N clients reading and analyzing the data – eventually producing output that’s highly concentrated thus not requiring a lot of file system writes. In this example, I’ll assume a shared file system size of 54TB, which is the total NVMe capacity of a i3en.24xlarge.

Capacity can be scaled simply by adding row(s) of additional i3en.24xlarge instances that will act as storage expansion servers. We do this by configuring the expansion servers as NVMe over fabric (NVMe-oF) targets, and the the file server instances as initiators. This expansion is shown in figure 1 as the capacity expansion row.

NVMe-oF has been included in mainline Linux kernels for over 5 years, and best practices for setting up a pair of targets and initiators for RHEL can be found here.  This enables a total shared file system size that is a multiple of 54 TB, with each row of expansion instances adding an additional 54TB of capacity, but not aggregate performance. If the expansion instances are provisioned within the same cluster placement group, the additional “hop” to the expansion NVMe-oF averages less than 200 microseconds, courtesy of Elastic Fabric Adapter (EFA), our high-speed, low-latency network adapter.

While we are on the topic of the goodness of shared file-level abstraction, AWS offers a robust managed Lustre implementation called Amazon FSx for Lustre suitable for the vast majority of high performance workloads. If your application needs a more balanced Read/Write profile, FSx for Lustre is a great choice. For those of you that have an extreme read-only distribution use case like ours, read on for more details on how to roll your own filesystem.

Read-Mostly Distributed File System

For ultra-low latency read access, each file server instance has a local XFS file system, striped via LVM (the Logical Volume Manager) across all 8 local NVMe devices, and optionally concatenated with NVMe-oF drives presented from the capacity row.  This arrangement allows the addition of capacity and growth of the shared file system, without disrupting the overall file system structure.

The local file systems that exist on all file servers are all local copies of a shared POSIX-compatible FUSE (Filesystem in USErspace) file system. This is based on open-source GLUSTER, and any number of clients (including the servers themselves) can directly read and write to it through the FUSE mount. When a FUSE client writes to the file system, each write is replicated to all the server nodes, and can be seen immediately on each server and by each client.

Because the file system is designed to scale reads, in a low (or no) write environment, the write performance penalty due to FUSE abstraction and GLUSTER replication to the N underlying file systems isn’t a concern. In practice, the write speed is limited to a few hundred MBytes/s through the remote FUSE client, and reads from a remote client are in the range of a few GBytes/s. However, when accessing files on the file server via the read-only (non-FUSE) mount, read access occurs at PCI backplane speeds. Because each file server is reading directly from a local copy, the aggregate read performance scales perfectly linearly with the number of file servers.

Read-intensive applications and jobs can run directly on the file server, opening the files for read on the local read-only mount point, and writing output files through the FUSE enabled mount point. Both mount are to the same file system directory structure, which are constantly in sync. Non-consistency across the local file systems is avoided by mounting the local copies read-only, and using the shared file system’s consistency for all write and metadata operations. Thus, the full power of a shared file system is at the application’s disposal, but operating at the speed of localized NVMe reads.

Method

To create a read-mostly distributed file system, I provisioned 13 x Amazon EC2 i3en.24xlarge file servers using Red Hat Enterprise Linux 8, but in general, any common Linux distribution can be used. Following the GLUSTER installation guide, I built a single XFS GLUSTER “brick” file system on each server, which was striped using LVM, with a width of 1024 KB. Once all 13 peers (GLUSTER parlance for file server) had been added to the cluster, a volume of type “replica” was created that is automatically replicated to all 13 peers. This configuration leverages GLUSTER to create a shared file system construct that duplicates the entire file system directory and contents to all cluster members. Once created, we start the volume and mount the GLUSTER file system on all peers to an appropriate mount point, in this case, /sharedfs. This is our shared read/write file system.

Read the full blog to learn more about the setup, performance test and the results.

Reminder: You can learn a lot from AWS HPC engineers by subscribing to the HPC Tech Short YouTube channel, and following the AWS HPC Blog channel.

 

Return to Solution Channel Homepage
Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire