CPU March Madness Ends with Intel Nehalem EX Launch

By Michael Feldman

March 31, 2010

In what has become one of the busiest months ever for CPU introductions, Intel got its final say on Tuesday with the launch of its much-anticipated Nehalem EX. The new processor line encompasses the Xeon 7500 and 6500 series and will be the basis for shared memory SMP systems from dozens of server makers, including HPC stalwarts like Cray, SGI and Bull.

Nehalem EX’s biggest claim to fame is its 8-core footprint (a first for Intel), although 6-core and 4-core variants are also available. Since the new chip is intended for the “expandable” server segment, platforms from 2 to 8 sockets are supported natively, with the 4-socket server being the sweet spot. Custom implementations can expand the CPU count much further, however. SGI’s Altix UV 1000, for example, can aggregate as many as to 256 CPUs into a single cache coherent NUMA system.

Up to 16 memory slots can be attached per Nehalem EX socket for a maximum memory capacity of 1 TB on a 4-socket server. Four memory channels per socket should keep RAM access humming along nicely for most data-intensive applications. (If a better bandwidth-to-compute ratio needed, it’s probably worth looking into the 6-core and 4-core variants.) In any case, the large 24 MB of L3 cache should help data access in general, although, to be fair, only the top-bin parts provide that much L3. All the others come with either 18 MB or 12 MB.

For traditional enterprise applications, Nehalem EX is being positioned to bring mission-critical computing to the mainstream. Business intelligence, ERP, OLTP, and basically any heavy-duty enterprise application that fits into a virtualized server environment is fair game. Thanks to the impressive core count, memory support and new RAS features of the new chip, Intel is aiming is to grab market share from the RISC CPU-based SMP platforms that own much of this mission-critical space today.

For HPC, the EX silicon is positioned to support technical applications that can benefit from large amounts of shared memory, high CPU counts, or both. Here we’re talking about memory-intensive or I/O-intensive applications like CAE, EDA, life science simulations, seismic modeling codes — really any HPC workload that relies on large datasets and can benefit from a shared memory model. In a scale-out cluster environment, SMP servers also have a place since they reduce the number of nodes, and thus simplify cluster management, network infrastructure, and software costs.

While the Xeon 7500 series is the mainstream product line for Nehalem EX, the 6500 series is a 2-socket-only offshoot that was designed specifically for the HPC market. As such, the 6500 seems to be positioned halfway between the 7500 and the Xeon dual-socket CPUs, the 5500 and 5600 (Nehalem and Westmere EP, respectively). Basically the 6500 is aimed at lower cost dual-socket servers for applications that need larger memory footprints and higher bandwidth than EP-based platforms can muster.

For the time being, though, all the HPC platforms announced in conjunction with the EX launch are using 7500 silicon. Here’s a rundown of two of the more interesting systems introduced by HPC vendors this week.

SGI Adds Mini-SMP to Altix UV Stable

SGI’s use of Nehalem EX in its Altix UV (Ultraviolet) line, was well documented here in HPCwire and elsewhere, when the machines were previewed back in November 2009. The mid-range UV 100 (up to 96 CPU sockets and 6 TB of memory) and the top-of-the line UV 1000 (up to 256 sockets and 16 TB of memory) are based on SGI’s NUMAlink interconnect and custom chipset that extends the new CPU’s SMP capabilities significantly beyond its natural 8-socket limit. As such, the UV 100 and 1000 represent the largest x86-based SMP systems on the market today.

SGI decided to use the official Nehalem EX launch this week to introduce an entry-level Ultraviolet, the UV 10. It’s a 4-socket rackmount server with a top core count of 32 and maximum memory capacity of 512 GB (or 1 TB if you want to pay for outrageously expensive 16 GB DIMMs). Although, the new system is much smaller than the UV 100 and 1000 models, it comes with a lot of I/O expansion capacity. Ten PCIe I/O expansion slots are available, aimed principally at storage and networking cards. ”In terms of a quad-socket server, this is one of the highest-end options available in the marketplace,” said Geoffrey Noer, SGI’s senior director of product marketing

The UV10 doesn’t use the special chipset or NUMAlink interconnect of its larger siblings, but is still able to run the same software stack. The cut-down UV can be used as an application development machine for a larger UV production system or as a dedicated machine for bite-sized shared memory applications. SGI is also positioning the UV 10 as a service node for large conventional clusters, and is intending to sell them as such with the Altix ICE line. A list price of $33,250 is quoted for a mid-range configuration: 4 Xeon X7542 processors (6-core, 2.66 GHz), 32 GB of memory, and a SATA boot drive.

HLRN (Germany), CALMIP (France), the Institute of Low Temperature Science, Hokkaido (Japan), and the University of Tennessee (US) have UV 100 or 1000 machines on order, with the first systems slated to begin shipping in the second quarter of the year. The UV 10 systems are available immediately.

Cray and Bull Team Up on SMP Offering

Nehalem EX has also spurred Bull and Cray to jump on the SMP bandwagon. In this case though, it’s a two-for-one deal. Both vendors are using the same Bull-designed hardware for these systems and adding their own branding, software stacks, and custom support on top. The Cray-branded CX1000-S is under its new line of entry-level and midrange HPC machines that the company introduced last week, while the Bull supernodes fit into the bullx product line under its Extreme Computing portfolio announced last year. According to Ian Miller, senior vice president of the productivity solutions group and marketing at Cray, they very much liked the Bull technology. And since each company has more or less staked out different geographical territories — Bull in much of Europe and Cray everywhere else — the partnership just made sense to everyone involved.

The CX1000-S and bullx supernodes scale to 16 sockets (128 cores) and 1 TB of memory. Since 16 sockets is beyond the 8-processor reach of the Nehalem design, a custom-built node extension technology is employed. The implementation is somewhat unconventional though. Instead of an integrated node controller, the engineers opted for a custom “coherency switch” that aggregates up to four quad-socket Nehalem EX-based servers into one.

To back up a little, there are actually two variations of these machines: a compute node and a management node. In the Cray stable, the product set is split into the CX1000-SC (compute) and the CX1000-SM (management) models. The matching offerings from Bull are the S6010 and S6030.

The compute node is an L-shaped 1.5U box that houses up to four Nehalem EX chips hooked together via the native QPI links. Multiple boxes can be jigsawed together to construct larger SMP nodes (up to a maximum 6U, 16-socket configuration) via the aforementioned coherency switch.

The management node is a 3U box that comes with six PCIe slots, and in that sense is similar to the I/O-expandable UV 10. And like the SGI offering, this machine is meant to be used as a service node for a cluster or as a standalone compute node for apps that need lots of I/O capacity. It can also be expanded into larger SMP configurations via the magic coherency switch.

The SMP building block nodes will be shipping soon, but the coherency switch hardware won’t be available until later in the second quarter. Cray has quoted a starting price of under $100,000 for the CX1000 line in general. Pricing on the bullx supernodes is not public.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire