Scaling the Exa

By Nicole Hemsoth

June 3, 2010

The petascale era of supercomputing is barely underway, but the effort to reach the exascale level has already begun. In fact, it began three years ago as part of an international effort to develop a software infrastructure for exaflop supercomputers.

The International Exascale Software Project (IESP) was formed with the realization that current software used for terascale and now petascale computing is inadequate for exascale computing. The IESP brings together government agencies, vendors and other stakeholders in the HPC community, with the goal of designing and building a system software stack to support this future level of computing. That will entail managing parallelism an order of magnitude higher than the current top systems in the field today.

The University of Tennessee’s Jack Dongarra has been involved with the IESP since its conception back in 2007. At ISC’10 he chaired a session that outlined its goals and gave a status report on the project’s progress. We got a chance to speak with him before the conference to discuss exascale software, the project, and the importance of developing this software for the global HPC community.

HPCwire: We had to go through a transition like this before. What happened to software in the transition from terascale to petascale?

Jack Dongarra: Today we have very little software that runs at the petascale level. We have software approaching terascale software, in that it routinely performs at the teraflop levels on our largest machines. Only through extreme efforts do we get to claim petaflop levels for our applications. It really requires a rethinking.

When we made the transition from vector machines to parallel systems, that was a big deal. We’re encountering the same kinds of transition today in terms of rewriting our software, just in terms of the things that I deal with, which is writing numerical libraries. We’re rewriting everything to address issues of multicore.

Multicore presents many challenges in terms of performance that were not present with parallel computing. I know that seems a little strange, but it’s because of the fact that with multicore, things happen much faster. So the bandwidth has increased, latency has gotten better. So you can’t hesitate in what you’re doing. You’ll lose too much performance.

The model that we had for parallel processing was a fork-join sort of model — what I’ll call a bulk synchronous form. It was a loop then you did a bunch of things in parallel then you joined together at the end of that loop. You can’t do that with multicore. You need to do more asynchronous processing.

So you need to develop algorithms that really present a form of execution that is asynchronous and breaks that model of loop-level parallelism, because waiting for the tasks to finish is just too inefficient on these systems. It requires a rethinking of our algorithms and a rewriting of our software. So it’s that kind of thing that we have to go through again as we go to exascale.

HPCwire: Is this transition going to be different?

Dongarra: I think it is different, and it’s different for a few reasons. One is that we learned some lessons from the previous transitions that took place, and we don’t want to repeat that experience. The second reason is that there’s a general recognition that this change is going to more dramatic than it was in the previous transition. Going from thousands to hundreds of thousands of threads of execution, which is what we did before, is going to be different than going from hundreds of thousand to perhaps billions of threads. That change is going to have an enormous impact. And tied together with some of the architectural features that are being proposed today for exascale systems, is going to lead to a lot of tension, right at the software point.

Because of the steepness of the ascent from petascale to exascale, we should start this process as soon as possible. The extreme parallelism, the hybrid design, and because the tightening of the memory bandwidth bottleneck is going to become more extreme as we move to the future, we have to start addressing these issues now.

Also, the relative amount of memory that we have on exascale systems — that balance between FLOPS and bytes — is going to be changing. In the old, old days we thought: one byte per FLOP. When you look at petascale machines, that ratio has changed quite a bit, and when you look toward exascale, it’s going to change again in an even more dramatic way. That will cause some issues with the ability of our algorithms to scale as you grow the problem size.

The other issue deals with fault tolerance. When you have billions of parallel things, we’re going to have failure. So it’s going to become more of a normal part of computing that we’re going to be dropping or losing part of the computation. We have to be prepared to adjust to that somehow. In the past, we didn’t have to worry so much about that, and when we did, we performed a checkpoint and a restart. Well, for exascale, you can’t do a checkpoint. There’s just too much memory in the system, so it would take too long.

The software infrastructure can’t deal with that today, so it’s a call to action to deal with these hardware changes. If we don’t do anything, the software ecosystem would remain stagnant. So we have to look at different approaches and perhaps be more involved in the design of architecture, in the sense there will be a co-design with algorithms and applications people, and helping to design machines that make sense.

HPCwire: Do you think there’s general agreement about what the hardware will look like?

Dongarra: There are a number of constraints of the architecture for exascale. One constraint is cost. Everybody says a machine can cost no more than $200 million. You’re going to spend half your money on memory, so you have take that into consideration.

There are also other constraints that come into play. For example, the machine can consume no more than 20 MW. That’s thought to be the upper limit for a reasonable machine from the standpoint of power, cooling, etc. The machine we have here at Oak Ridge — the Jaguar supercomputer — is about 7 megawatts.

And then there’s the question of what kind of processors are we going to have. The thinking today is that there’s going to be two paths — what some people call them swim lanes — to exascale hardware.

One is going to be lightweight processors. By lightweight, we mean things like the Blue Gene [PowerPC] processor. One general way to characterize this architecture is 1GHz in processor speed, one thousand cores per node, and one million nodes per system. A second path to exascale is commodity processors together with accelerators, such as GPUs. The software would support both those models, although there would be differences we’d have to deal with.

Both of the models generate 10^18 FLOPS and both have on the order of a billion threads of execution. We realize that represents a lot of parallel processing and we need to support that in some manner. That’s today’s view of the hardware, although clearly, that could change.

HPCwire: So how would you engage vendors to build these exascale machines. What’s the business case?

Dongarra: Well, the business case may mean that the government, or governments, would have to provide incentives to the manufacturers, that is, to put up money so that they develop architectures in this direction. We can’t expect the vendors to drop the commodity side of their business to address this very small niche activity unless there’s an incentive to do so. I think the government is prepared to provide those incentives, and to work with the applications people to change that current model that we have, where things are just thrown over the fence.

The other thing that we realize is that we do have a very good mechanism for coordinating research at a global level. There’s some level of coordination done between the DOE and NSF, but there’s really no coordination across country boundaries. We’re looking at the EC, and the activities they have, the Japanese, perhaps the Chinese and Koreans, and so on, and trying to understand how to attack the software issues, by looking at dividing the work.

That requires a higher level of coordination at the government funding level to be able to target research in certain areas so we don’t duplicate efforts too much. And then we can also work together on things we have a mutual interest in.

The G8 countries recently put out a call for exascale software for applications. Seven of the G8 countries — the US, Canada, the UK, France, Germany, Japan, and Russia — have gotten together and put money on the table — 10 million Euros — to fund research and evaluate collaborative proposals on exascale software. They’re going to evaluate the proposals that were submitted and ask a certain number of the them to refine their ideas and submit full proposals. Part of ground rules for this is that you had to have a minimum of three countries involved in the proposal. This G8 initiative used the IESP as a model for describing what they wanted.

HPCwire: In a broad sense, what is the goal of the IESP?

Dongarra: The goal of the IESP is to come up with an international plan for developing the next generation of open source software for high performance scientific computing. So our goal is to develop a roadmap, and that roadmap would lay out issues, priorities, and describe the software stack that’s necessary for exascale.

This software stack has things from the system side, like operating systems, I/O, the external environment and system management. It also deals with the development environment, which looks at programming models, frameworks for developing applications, compilers, numerical libraries and debugging tools. There’s another element that tries to integrate applications and use them as a vehicle for testing the ideas.

And finally there’s an avenue that I’ll call cross-cutting issues — issues that really impact all of the software that we’re talking about. That has to do with resilience, power management, performance optimization, and overall programmability.

Today we don’t really have this global evaluation of missing components within the stack itself. We want to make sure that we understand what the needs are and that the research would cover those needs. So we’re trying to define and develop the priorities to help with this planning process.

Ultimately we feel the scale of investments is such that we really need an international input on the requirements, so we want to work together with Americans, Europeans, and Asians and really develop this larger vision for high performance computing — something that hasn’t been done in the past.

All of this sits on top of a recognition that these things are driven by the applications. We’re not just developing software in isolation. The applications people feel it’s critical to have exascale computing to further their area of research. The US DOE and NSF have been very strong in terms of developing those science drivers — areas like climate, nuclear energy, combustion, advanced materials, C02 sequestration, and basic science. These all play a part in the needs for exascale. So we’re working with the applications people in getting to that level.

HPCwire: The stack you’re describing, from the OS on down, sounds like a rather substantial body of software. How would it be maintained?

Dongarra: Once it gets developed, a mechanism has to be put in place for the care of the software. There’s a path to exascale. Going from petaflops to 10 petaflops to 100 petaflops, and finally to exascale, are going to require changes along the way. It will require a redeployment in certain areas and a strategy for phasing in the software and the research to necessary to develop it.

And there has to be the ultimate repositing of the information and keeping it in a state where it can, in fact, be used. So yes, that becomes an important aspect of the exascale software initiative.

HPCwire: An example of this approach that comes to mind is the MPI effort, which came out of the HPC research community, and was subsequently supported by vendors. Do you see that as a model for what’s being done here, but at a much broader scale?

Dongarra: Absolutely. We have a community that develops software and vendors picking it up, perhaps refining it, and adding value to the software for their own hardware platforms. MPI is a good example, where we have a standard, which is not software, but a description of what the software should do. And then we have activities that provide a working version of that standard. MPICH is a good example of that; Open MPI is another.

Open MPI is more of a community-involved effort that has input from a larger group to develop an open source implementation. Open source is one of the major goals of the exascale software initiative, although we don’t specify the exact licensing structure within that context. That’s something we’ll have to face at some point.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire