NOAA-ORNL Climate Research Collaboration Sets Lofty Goals for New Supercomputer

By Nicole Hemsoth

July 26, 2010

A year ago, NOAA and DOE signed an agreement calling for closer cooperation between NOAA and Oak Ridge National Laboratory. The agreement tasked ORNL with “providing research collaboration and technical support for high performance computing and data systems that will deliver improved climate data and model experiments.” Jim Rogers, director of operations for the National Center for Computational Sciences at ORNL, discusses the agreement and the goals for the Climate Modeling and Research System (CMRS), the initial supercomputer chosen for the collaborative work.

HPCwire: What are the scientific goals for CMRS? What kind of modeling resolution are you targeting? Will this allow you to add more components to the ensemble models?

Rogers: The high-level goal for this project is to develop better models for predicting climate variability and change. ORNL’s role is to provide NOAA with both the HPC resources and the collaborative support needed to extend and improve these models.

On NOAA’s current systems, the typical resolution of the coupled climate model has been limited to a grid increment of 200 km for the atmosphere, and 100 km for the ocean model because of limitations in computational resources. However, on the new Cray XE6, we expect that NOAA scientists will quickly transition to a much higher resolution 50 km atmosphere and 25 km ocean model. And while I expect that this will be the initial workhorse, NOAA is already working on a 25 km atmosphere and 10 km ocean model with better physics.

There are several things in play as we move to these higher resolution models. The first is identifying core-count sweet spots for the existing model, the second is improving the scalability of the current code so that it can effectively use larger numbers of cores, and the third is introducing a new version of the atmosphere that includes a more complete treatment of the upper-level atmospheric physics and dynamics.

HPCwire: Who are NOAA’s research partners in this endeavor?

Rogers: This agreement specifically includes collaboration among scientists within NOAA and DOE/ORNL. Jim Hack, Director of the National Center for Computational Sciences, is working with Brian Gross and Venkatramani Balaji of NOAA/GFDL to identify and scope these collaborative efforts.

HPCwire: Why did NOAA decide to use ORNL as a host site for CMRS?

Rogers: ORNL plays a leadership role for climate change science and is a well-established HPC resource provider, with the current fastest computer system in the world. NOAA has been using a significant number of processor hours at ORNL on both the Cray XT4 and XT5 since 2008. This existing relationship provides a strong basis for the more dedicated support that they will receive with the CMRS. This arrangement allows NOAA to leverage our unique strengths as the host site for the equipment, as well as collaborate on the science side in partnering two strong climate science communities.

HPCwire: As part of its energy research mission, ORNL has been active in climate research for a long time, but the lab has really stepped up its climate work in recent years, including recruiting top research talent in this field. What’s driving this escalation?

Rogers: ORNL has definitely increased its focus on climate modeling and research. Day to day, I see growth in this area through the Oak Ridge Climate Change Science Institute. There is a lot of momentum in this area, a lot of attention from the public, and significant opportunities for fostering collaborative work in earth systems modeling.

HPCwire: Is there a “critical mass” effect from having all this climate research talent and multiple petascale supercomputers in one place?

Rogers: There is clearly an advantage to this situation.

HPCwire: Do you expect the petascale CMRS system to attract even more climate research talent to the NOAA site at ORNL?

Rogers: The priorities for use of the CMRS system will be up to NOAA management, but it’s easy to imagine how the huge increase in capability will provide NOAA with the flexibility to do new things and more fully engage other components of the NOAA climate change program. The opportunity to work on state-of-the-art hardware will always be a draw, especially on this Cray XE6, which provides some very attractive features that even big brother “Jaguar” cannot provide, including denser, faster nodes and the higher-speed interconnect.

HPCwire: NOAA is providing ORNL with $215 million over five years for supporting the climate research work. This is federal stimulus money. How much do you expect this big funding infusion to accelerate progress in climate research?

Rogers: Only the first $73 million is ARRA [American Recovery and Reinvestment Act] money. That money has been budgeted for the acquisition, installation, operation, and support of the CMRS. Other funding sources up to the $215 million will round out many of the collaborative science projects and activities. The impact of this stimulus funding is pretty clear, though. In Year 1, the new CMRS provides a 5x increase in computational capability over NOAA’s current largest system. In the second year, the capacity quadruples to more than 1.1 petaflops. This is a huge resource, delivered in step with the scientific community’s needs.

HPCwire: How will the increased computational power and research funding affect America’s standing in the global climate research community? Will the US be taking on a bigger share of the work for IPCC [Intergovernmental Panel on Climate Change] or other collaborative projects?

Rogers: I certainly expect the CMRS systems to be used for IPCC AR5 [Fifth Assessment Report] work.

HPCwire: Is NOAA’s climate research work always collaborative, or do you sometimes compete with other large climate centers around the world?

Rogers: Climate science is by definition a highly collaborative enterprise. I imagine that this machine acquisition will put NOAA in a role to take on additional leadership roles in exploring questions about climate change.

HPCwire: This will bring the number of Cray petascale systems at ORNL to three. Why did you choose the Cray supercomputers for this work?

Rogers: This was the outcome of a competitive procurement that assessed a large number of factors, including technical solution and strategy, benchmarks, past performance, and total cost of ownership. Intense interest from the HPC vendors led to very good proposals. In the end, the Cray solution using the XE6 was the most competitive, demonstrating a very good fit for the high-resolution climate models, an aggressive installation and upgrade plan, and the greatest ability to deliver cycles to the NOAA climate community.

HPCwire: You’ll soon have the CMRS petascale system. What could you do with an exascale supercomputer?

Rogers: The climate modeling community has articulated plans to pursue higher-resolution models with much more realistic physics, with a goal of improving simulation fidelity. Exascale capabilities will be needed to achieve many of these challenging scientific goals. Of course, the modeling activities will need to be able to exploit a much more complex architecture to take advantage of an exascale computer, which will provide an equally challenging technical task for the climate community.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: Oak Ridge Score Reveal

May 5, 2024

It’s time to reveal the results from the Oak Ridge competition module, well, it’s actually well past time. My day job and travel schedule have put me way behind, but I am dedicated to getting all this great content o Read more…

2024 Winter Classic: Meet Team Lobo

May 5, 2024

This is the other team from University of New Mexico, since there are two, right? This team has some significant cluster competition experience with two veterans of previous Winter Classic and SC events. It’s a nice mi Read more…

2024 Winter Classic: Meet Team UC Santa Cruz

May 4, 2024

It was a quiet Valentine’s Day evening when I interviewed the UC Santa Cruz team. Since none of us seemed to have any plans, it seemed like a good time to do it. But there was some good news for the Santa Cruz team Read more…

2024 Winter Classic: Meet the Roadrunners

May 4, 2024

This is the other team from the University of New Mexico. I mistakenly thought that one of their team members was going to make history by being the first competitor to compete for two different schools – but I was wro Read more…

2024 Winter Classic: Meet Channel Islands “A”

May 3, 2024

This is the second team from California State University, Channel Islands – or maybe it’s the first team? Not sure, but I do know they have two teams total, and this is one of them. As you’ll see in the video in Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 3, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

2024 Winter Classic: Meet Team Lobo

May 5, 2024

This is the other team from University of New Mexico, since there are two, right? This team has some significant cluster competition experience with two veteran Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire