World’s First Trans-Pacific 100-Gigabit R&E Network Established

October 23, 2015

The Pacific Wave project has announced that the Pacific Northwest Gigapop (PNWGP) has established the world’s first 100-Gigabit per second (Gbps) research and education (R&E) network link between Asia and the U.S., with related transit, peering, and exchange fabric.

“This milestone is great news. The world’s hardest problems can only be solved through global collaboration, and 10Gbps links will soon be insufficient to support large-scale science,” said Greg Bell, director of the Scientific Networking Division at Lawrence Berkeley National Laboratory in California, and director of the Energy Science Network (ESnet). “Faster data almost always means faster discovery. More important than bandwidth, though, is a growing spirit of international cooperation in our community: multiple stakeholders are working together towards a common goal of open, fast, and safe research networking for the world.”

“In the end, the purpose of advanced networking is to accelerate progress in research and education and to speed and broaden our impact on society,” said Dr. David Lassner, president of the University of Hawaii. “This major improvement in both the speed and sophistication in Trans-Pacific connectivity will help our global academic community do both.”

Pacific Wave will provide this 100Gbps capability to the National Science Foundation (NSF) funded International Research Network Connections (IRNC) TransPAC4 project, led by Indiana University. Pacific Wave recently received a five-year NSF IRNC award to serve as the U.S. Pacific Rim’s open and distributed interconnection, peering, and exchange fabric, including Software-Defined Exchange (SDX), Software-Defined Networking (SDN) and research DMZ capabilities.

Pacific-Wave-102015_webBlue

The integrated 100Gbps trans-pacific layer 1, 2 and 3 TransPAC – Pacific Wave network fabric incorporates:

  • A dedicated 100Gbps wavelength between the Pacific Wave national Research & Education (R&E) node in Seattle, U.S.A. and Tokyo, Japan
  • 100Gbps peering and routing fabrics – using Brocade MLX routers – in Tokyo and Seattle
  • Access and peering in Tokyo for Asian R&E networks at both the long-standing WIDE/T-REX/T-LEX Open Exchange Point, and at the newly-established Pacific Wave node at 3-8-21 Higashi-Shinagawa, Shinagawa-Ku
  • The 100Gbps connection in the U.S. using Pacific Wave’s existing 100Gbps open, distributed, wide-area peering and exchange fabric, which is based on a distributed mesh of Brocade MLX routers, across the Pacific Wave backbone, and has primary points of presence in Seattle, Sunnyvale, and Los Angeles, as well as additional 100Gbps access and peering at StarLight in Chicago
  • On the U.S. side, the Pacific Wave fabric provides direct 100Gbps connectivity with multiple 100Gbps interfaces to Internet2’s Advanced Layer 2 and 3 Services (AL3S and AL2S), as well as 100Gbps connectivity to ESnet, and 100Gbps and/or 10Gbps connections to nearly all the major Asia Pacific R&E networks, U.S. Department of Energy’s ESnet, U.S. National Oceanic and Atmospheric Administration N-wave, and commercial cloud providers regularly used by national and international R&E communities
  • Interconnection of the U.S.-based Pacific Wave and the Japan-based WIDE/T-REX peering, exchange, interconnection and Science-DMZ facilities, creating the first intercontinental R&E open, distributed exchange and peering fabric
  • Extension of the new Pacific Wave experimental SDN and SDX fabrics across the Pacific Ocean to Asia, enabling direct interconnection with Asian R&E SDN and SDX projects, including those supported by WIDE and others. GENI, OpenFlow, and related projects will also be supported
  • Connectivity to Pacific Wave’s 100Gbps wide-area Inter-institutional Science DMZ network, which has primary points of presence within Los Angeles, Seattle, Sunnyvale, and which serves as the backplane for the new NSF-sponsored Pacific Research Platform

Pacific Wave is a joint project of the Pacific Northwest Gigpop (PNWGP) and CENIC (the Corporation for Education Network Initiatives in California) which is partially supported by NSF funding. Pacific Wave is a pioneering, high-performance, production-quality, open, distributed peering and exchange fabric that spans and integrates nodes across the entire west coast of the USA from Mexico to Canada and has major points-of-presence in Seattle, Sunnyvale, and Los Angeles on its purpose-built 100Gbps open peering backbone.

Now, via the new 100Gbps TransPac – Pacific Wave link, the open peering and exchange fabric extends to and includes T-REX in Tokyo. Pacific Wave interconnects nearly all of the Asia Pacific Region’s research and education networks and enables them to directly connect, on their own terms, and under their own control, to each other and to other resources in the USA and elsewhere, including the North America’s primary open exchanges such as StarLight, and North American R&E networks such as Internet2, NREN, DREN, CANARIE, AMPATH, CUDI, and to the full range of USA commodity ISPs and cloud providers.

Pacific Wave’s facilities also include (1) a second dedicated 100Gbps West Coast 100Gbps backbone, providing a production quality Science DMZ fabric and (2) the new Pacific Research Platform; and dedicated, independent, purpose-built SDX, SDN, and OpenFlow fabrics, including two separate 10Gbps links for enabling “breakable network” experimentation. All these facilities directly interconnect with Internet2’s AL2S/AL3S and other experimental fabrics. The Pacific Wave points of presence in Seattle, Los Angeles, and Sunnyvale serve as GLIF Optical Lambda Exchange Facilities (“GOLE’s”).

See the full Pacific Wave announcement at: https://madmimi.com/p/76f2d6?fe=1&pact=34020284101

Source: Corporation for Education Network Initiatives in California (CENIC)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire