ARM Unveils Scalable Vector Extension for HPC at Hot Chips

By John Russell

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets.

Fujitsu first announced plans to adopt ARM for the post K machine – a switch from SPARC processor technology used in the K computer – at ISC2016 and said at the time that it would reveal more at Hot Chips about the ARM development effort needed. Bull Atos is also developing an ARM-based supercomputer.

The SVE is focused on addressing “next generation high performance computing challenges and by that we mean workloads typically found in scientific computing environment where they are very parallelizable,” said Ian Smythe, director of marketing programs, ARM Compute Products Group, in a pre-briefing. SVE is scalable from 128-bits to 2048-bits in 128-bit increments and, among other things, should enhance ARM’s ability to exploit fine grain parallelism.

ARM SVE BenefitsNigel Stephens, lead ISA architect and ARM Fellow, provided more technical detail in his blog (Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture, link below) coinciding with his Hot Chips presentation. It’s worth reading for a fast but substantial summary.

“Rather than specifying a specific vector length, SVE allows CPU designers to choose the most appropriate vector length for their application and market, from 128 bits up to 2048 bits per vector register,” wrote Stephens. “SVE also supports a vector-length agnostic (VLA) programming model that can adapt to the available vector length. Adoption of the VLA paradigm allows you to compile or hand-code your program for SVE once, and then run it at different implementation performance points, while avoiding the need to recompile or rewrite it when longer vectors appear in the future. This reduces deployment costs over the lifetime of the architecture; a program just works and executes wider and faster.

“Scientific workloads, mentioned earlier, have traditionally been carefully written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. It’s therefore relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit,” wrote Stephens.

He notes that scientific workloads have traditionally been written to exploit as much data-level parallelism as possible with careful use of OpenMP pragmas and other source code annotations. “It’s relatively straightforward for a compiler to vectorize such code and make good use of a wider vector unit. Supercomputers are also built with the wide, high- bandwidth memory systems necessary to feed a longer vector unit.”

ARM server workloadsWhile HPC is a natural fit for SVE’s longer vectors, said Stephens, it also offers an opportunity to improve vectorizing compilers that will be of general benefit over the longer term as other systems scale to support increased data level parallelism.

Amplifying on the point, he wrote, “It is worth noting at this point that Amdahl’s Law tells us that the theoretical limit of a task’s speedup is governed by the amount of unparallelizable code. If you succeed in vectorizing 10 percent of your execution and make that code run four times faster (e.g. a 256-bit vector allows 4x64b parallel operations), then you reduce 1000 cycles down to 925 cycles and provide a limited speedup for the power and area cost of the extra gates. Even if you could vectorize 50 percent of your execution infinitely (unlikely!) you’ve still only doubled the overall performance. You need to be able to vectorize much more of your program to realize the potential gains from longer vectors.”

The ARMv7 Advanced SIMD (aka the ARM NEON) is now about 12 years old and was originally intended to accelerate media processing tasks on the main processor. With the move to AArch64, NEON gained full IEEE double-precision float, 64-bit integer operations, and grew the register file to thirty-two 128-bit vector registers. These changes, says Stephens, made NEON a better compiler target for general-purpose compute. SVE is a complementary extension that does not replace NEON, and was developed specifically for vectorization of HPC scientific workloads, he says.

Snapshot of new SVE features compared to NEON:

  • Scalable vector length (VL)
  • VL agnostic (VLA) programming
  • Gather-load & Scatter-store
  • Per-lane predication
  • Predicate-driven loop control and management
  • Vector partitioning and SW managed speculation
  • Extended integer and floating- point horizontal reductions
  • Scalarized intra-vector sub-loops

Smythe emphasized, “If you compile the code for SVE it will run on any implementation of SVE regardless of the width, whether 128 or 1024 or 2048, and the hardware implementation, that code will run on ARM architecture as a binary. That’s important and gives us scalability and compatibility into the future for the compilers and the code that HPC guys are writing.”

ARM ecosystemARM has been steadily working to expand its ecosystem (shown here) with hopes of capturing a chunk of the broader x86 market. It has notable wins in many market segments, although the market traction has been tougher to gauge, and it is only in the past couple of years that server chips started to become available. Many design wins have been niche oriented; one example is an HPE ARM-based storage server (StoreVirtual 3200) announced earlier this month. ARM, of course, is a juggernaut in mobile computing.

Prior to the Hot Chips conference, with its distinctly technical focus, ARM was pre-briefing some of the HPC community about SVE and using the opportunity to reinforce its mission of growth, its success in ecosystem building, and to bask in some of the glory of the post K computer win. Given the recent acquisition of ARM by SoftBank, it will be interesting to watch how the marketing and technical activities change, if at all.

Lakshmi Mandyam, senior marketing director, ARM Server Programs, said, “We’ve been focusing on enabling some base market segments to establish some beachheads and enable our partners to get adoption in those key areas. Also we have also been using key end users to drive our approach in terms of ecosystem enablement because clearly we are catching up with x86 in terms of software enablement.”

“The move to open source and consuming applications and workloads through [as-a-service models] is really driving a lot of disruption of the industry. It also presents an opportunity because a lot of those platforms are based on open source and Linux and or intermediate middleware and so the dependency on the legacy (x86) software and architectures is gone. That presents an opportunity to ARM.”

It’s also important, she said, to recognize that many modern workloads, even in HPC, are moving towards the scale out model as opposed to a purely scale up. Many of those applications are driven by IO and memory performance. “This where the ARM partnership can shine because we are able to deliver heterogeneous computing quite easily and we’re able to deliver optimized algorithm processing quite easily. If you look at a lot of these applications, it’s not about spec and benchmark performance; it’s about what can you deliver in my application.”

“When you think about Fujitsu, as they talked about the post K computer, a lot of the folks are looking for this really tuned performance, to take a codesign approach where they are looking at the entire problem, and to deliver an application and service for a given problem. This is where their ability to tune platforms down to the silicon level pays big dividends,” she said.

Here’s a link to Nigel Stephens’ blog on the ARM SVE anouncment: Technology Update: The Scalable Vector Extension (SVE) for the ARMv8-A Architecture

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy With Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire