THE BEOWULF FACTOR IN HIGH PERFORMANCE COMPUTING

December 8, 2000

by Christopher Lazou

San Diego, CALIF. — In the late 1980’s it became fashionable to give presentations with sound bites, such as, “supercomputers and the killer micro.” The message was that cheap micros will replace the large scale supercomputers then in use, for solving the pressing problems of our time.

Today the “killer Beowulf” has arrived; a cheap solution to supercomputing. A lot of time and money albeit in small parcels have been spent by “Geegs” to install clusters of Pentium, Alphas’, Power 3 or other makes of commodity Chip, on a DIY (Do It Yourself) basis. These systems are mostly experimental relatively small, 32-64 nodes, cheap in capital outlay but fraught with danger and poor reliability, especially in novice hands. “Buy (DIY) in haste, repent in leisure”, as the Romans used to say.

Yet there are others with a much more serious mission, for example the Beowulf machine at Sandia, with 2600 Alpha EV67 chips, is using LINUX and Myrinet2000 as interconnect. Bill Camp at Sandia wants to enhance this system to 20,000 Alpha EV7 processors by year 2004-5. The largest civilian Beowulf system planned, paid from the $45 million NSF money, is the one at the Pittsburgh Supercomputing Centre, consisting of 2,728 Alpha EV67 processors in 682 nodes using QSNet and rated at 6Tflop/s peak performance.

Thus, in the last three years the Beowulf paradigm has been used to build departmental and desktop systems from off-the-shelf components. These typically consist of 32 – 64, or several hundred or in a few cases 1000s, of Intel Pentium III, IBM power 3 or Compaq Alpha chips, cobbled together using Myrinet or QSNet as interconnect. This Do It Yourself (DIY) system building, is cheaper on paper, as costs often do not include the engineering and commissioning manpower or the vendor profit margins. It has become an attractive option in academic institutions strapped for money, especially in those with experimental non mission critical research. Apart from the money constrains, those who take this path tend to be young academics with a technical scientific background who find the idea of bolting their own systems together challenging. This activity gives them job satisfaction even though it diverts energy from their scientific task.

Experience from the US (ASCI) programme showed that the scalable systems from commodity chips is viable and provides capability computing, while not as efficient in throughput for conventional large scale applications.

Experience also shows, that prototype Beowulf systems with 32-CPUs compare favourably with the Cray T3E, but not when using larger systems. These prototype systems with Pentium, IBM Power 3 and Alpha Chips, are available and with benchmark results, at Daresbury Laboratory. For example, the applications platform developed under the QUASI project is a 32-CPU Alpha cluster connected with QSNet and running LINUX. In the UK some clusters are mainly for single application, e.g. university of Liverpool, while Daresbury Laboratory, UK, NOAA, Sandia, Cornell and Pittsburgh university, in the USA, are trying to prove the Beowulf paradigm for HPC.

At present a 32-node Beowulf system using Myrinet interconnect can be assembled for about $100 thousand. It is scalable to 128 nodes and even if you add 1TBytes of archive disks, this can cost about $200 thousand. For the moment, HPC Beowulf systems are mainly experimental, with lots of question marks on whether they are suited to these applications. The cost per peak Mflop/s is however very seductive. The cost of a traditional HPC system, such as the Cray T3E, Fujitsu VPP5000 or NEC SX-5 is typically 5 times more expensive than a commodity SMP system.

What is often neglected is the performance one gets from these systems. For instance taking the Compaq Alpha as having performance 100, the SGI Origin 3200 is 61, the Compaq Alpha ES40/667 is 113, the IBM RS/6000 Power 3 is 94, the SunBlade 1000/750 is 85 and the NEC SX-5 is 3975. Thus the NEC SX-5, achieves 39.75 times more performance than the baseline Alpha Chip using a Daresbury benchmark. This is why one reads (HPCWire June 2nd 2000), that on sparse matrix problems using FMSLIB, a 16 CPU NEC SX-5 delivers 126.5 Gflop/s sustained performance out of the 128Gflop/s peak. To get the same sustain performance on scalar SMPs one would need to buy a system with Tflop/s peak.

Although a lot of effort is going into proving the Beowulf paradigm, there are still a lot of issues to be resolved. It crucially includes bandwidth of interconnect, share memory size, effect of variable message passing on L2 cache, reliability of clusters, and the immaturity of LINUX with many HPC needed functions missing. These issues cumulatively add up to deliver poor performance at present. This state of affairs is, however, temporary and once the many HPC components from high end computer vendors are imported into LINUX and standardised as open source, the picture should change fundamentally. Whether performance would improve remains to be seen.

The Beowulf paradigm is also gaining momentum with a number of small companies providing build and maintenance services, for made to order systems, using commodity Chips and Interconnect of the customer’s choice. Currently Myrinet2000 and QSNet are the preferred ones.

In summary, LINUX is a disruptive technology but whether Beowulf should be considered as one is my view not proven. Although Beowulf could be a threat to scalable clusters offered presently by computer vendors, it is unlikely to have a significant impact on the Parallel Vector Processor (PVP) supercomputer line. The reason is simple. The PVP market was never strong in strapped-for-money university departments. I guess, the initial impact is likely to be seen in commodity servers, where LINUX is in the process of being customised and adopted by all the main vendors, IBM, Compaq, HP, SUN, Fujitsu and so on.

It is bemusing to observe that some of the problems of the 1970’s are revisiting computing. The programming difficulties of optimising vector codes are now re-appearing as part of multi-level cache; the challenge is how to achieve optimisation across different levels of cache without loss of coherence. The problems derived from ruefully inadequate Operating System functionality and non-standard source, are to be imported in computing production, in the guise of open source LINUX. In the past, modifying Operating Systems to enhance functionality and paying the price of unreliability, was a necessity, now we are told, it is to be done as of preferred choice.

Maybe “Supercomputing history repeats itself” or, maybe “History proceeds by changing the subject”.

Copyright: Christopher Lazou, HiPerCom Consultants, Ltd., UK. Email: [email protected]

============================================================

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SIA Recognizes Robert Dennard with 2019 Noyce Award

November 12, 2019

If you don’t know what Dennard Scaling is, the chances are strong you don’t labor in electronics. Robert Dennard, longtime IBM researcher, inventor of the DRAM and the fellow for whom Dennard Scaling was named, is th Read more…

By John Russell

Leveraging Exaflops Performance to Remediate Nuclear Waste

November 12, 2019

Nuclear waste storage sites are a subject of intense controversy and debate; nobody wants the radioactive remnants in their backyard. Now, a collaboration between Berkeley Lab, Pacific Northwest National University (PNNL Read more…

By Oliver Peckham

Using HPC and Machine Learning to Predict Traffic Congestion

November 12, 2019

Traffic congestion is a never-ending logic puzzle, dictated by commute patterns, but also by more stochastic accidents and similar disruptions. Traffic engineers struggle to model the traffic flow that occurs after accid Read more…

By Oliver Peckham

Mira Supercomputer Enables Cancer Research Breakthrough

November 11, 2019

Dynamic partial-wave spectroscopic (PWS) microscopy allows researchers to observe intracellular structures as small as 20 nanometers – smaller than those visible by optical microscopes – in three dimensions at a mill Read more…

By Staff report

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quantum annealing) – ion trap technology is edging into the QC Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. That’s the conclusion drawn by the scientists and researcher Read more…

By Jan Rowell

IBM Adds Support for Ion Trap Quantum Technology to Qiskit

November 11, 2019

After years of percolating in the shadow of quantum computing research based on superconducting semiconductors – think IBM, Rigetti, Google, and D-Wave (quant Read more…

By John Russell

Tackling HPC’s Memory and I/O Bottlenecks with On-Node, Non-Volatile RAM

November 8, 2019

On-node, non-volatile memory (NVRAM) is a game-changing technology that can remove many I/O and memory bottlenecks and provide a key enabler for exascale. Th Read more…

By Jan Rowell

MLPerf Releases First Inference Benchmark Results; Nvidia Touts its Showing

November 6, 2019

MLPerf.org, the young AI-benchmarking consortium, today issued the first round of results for its inference test suite. Among organizations with submissions wer Read more…

By John Russell

Azure Cloud First with AMD Epyc Rome Processors

November 6, 2019

At Ignite 2019 this week, Microsoft's Azure cloud team and AMD announced an expansion of their partnership that began in 2017 when Azure debuted Epyc-backed ins Read more…

By Tiffany Trader

Nvidia Launches Credit Card-Sized 21 TOPS Jetson System for Edge Devices

November 6, 2019

Nvidia has launched a new addition to its Jetson product line: a credit card-sized (70x45mm) form factor delivering up to 21 trillion operations/second (TOPS) o Read more…

By Doug Black

In Memoriam: Steve Tuecke, Globus Co-founder

November 4, 2019

HPCwire is deeply saddened to report that Steve Tuecke, longtime scientist at Argonne National Lab and University of Chicago, has passed away at age 52. Tuecke Read more…

By Tiffany Trader

Spending Spree: Hyperscalers Bought $57B of IT in 2018, $10B+ by Google – But Is Cloud on Horizon?

October 31, 2019

Hyperscalers are the masters of the IT universe, gravitational centers of increasing pull in the emerging age of data-driven compute and AI.  In the high-stake Read more…

By Doug Black

Cray Debuts ClusterStor E1000 Finishing Remake of Portfolio for ‘Exascale Era’

October 30, 2019

Cray, now owned by HPE, today introduced the ClusterStor E1000 storage platform, which leverages Cray software and mixes hard disk drives (HDD) and flash memory Read more…

By John Russell

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Confirms Retreat on Omni-Path

August 1, 2019

Intel Corp.’s plans to make a big splash in the network fabric market for linking HPC and other workloads has apparently belly-flopped. The chipmaker confirmed to us the outlines of an earlier report by the website CRN that it has jettisoned plans for a second-generation version of its Omni-Path interconnect... Read more…

By Staff report

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Rise of NIH’s Biowulf Mirrors the Rise of Computational Biology

July 29, 2019

The story of NIH’s supercomputer Biowulf is fascinating, important, and in many ways representative of the transformation of life sciences and biomedical res Read more…

By John Russell

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This