From Clusters to Clouds: An Interview with Platform CEO Songnian Zhou

By Nicole Hemsoth

June 15, 2010

As one of the few technology companies that has remained profitable each year since its inception, Platform Computing has clearly been a frontrunner from its beginnings in 1992 for at least a few reasons. From the outset, Platform’s reliance on strategic partnerships to enable adoption of commodity HPC systems via its cluster management software formed a base business model that has been carried over to the present, especially as more enterprises are looking to private clouds to reduce IT complexity and costs.

Platform’s roots are in making distributed systems act as a unified whole, thereby eliminating the need for the older model of HPC, which often boiled down to large mainframes steadily chewing away at manually-provisioned jobs — a time of significant underutilization and inefficient scheduling. Its core competencies have matured with technological innovation, from static to dynamic resource provisioning and deliverance from cluster management woes.

While there are a few other companies that have been keeping pace with Platform, especially as the private cloud movement marches forward, what makes this company so interesting is its roots in cluster management and its backstory. Unlike many other firms, Platform Computing was not externally funded. It grew organically out of academic research and after failed attempts to find vendors willing to commercialize its ideas, the company was created out of the need to put innovation to use outside of theory — not out of an initial drive to go into business.

To get to the heart of the Platform Computing story, the firm’s CEO and co-founder, Songnian Zhou set aside a generous 45 minutes to talk about the company’s history and future direction with HPC in the Cloud. What follows is blatantly verbatim but when Zhou speaks, it is with a level of excitement and enthusiasm that somehow has to find its way into print.

The ideas that formed the basis of what Platform eventually became must be rooted in a particular motivation or vision based on the current state of IT. What was the environment when you came into the space and how did that shape your vision?

The company came into being because of the overall IT trend to move from proprietary centralized IT architecture to a more distributed, integrated, heterogeneous and service-oriented architecture. This was a big trend away from the mainframe and big SMP servers to more commodity-based horizontally-scalable systems that we are now seeing more and more in the HPC space

The company also came into being due to the transition in need in terms of the management of infrastructure for these large heterogeneous distributed computing environments but we are getting ahead here…

The origin was in the 1980s in Berkeley. At that time when I went there as a graduate student in 1982, it was the peak time of Berkeley Unix. Berkeley Unix was the first package that was really open source before open source became so popular, before it became Red Hat. That was the system that enabled a lot of the VAX machines rather than big mainframes or proprietary systems. That was also the software that started Sun Microsystems.

In 1982 as a graduate student my motivation was to put Berkeley Unix to the network and create a distributed operating system that incorporates and integrates all of these distributed, heterogeneous computers together treating them like components to deliver an overall coherent system for the business or users so they don’t need to worry about what machines to use to run what applications, they are able to access all the resources and get better results in a streamlined way.

My first work at Berkeley was a prototype system running on six Sun workstations — these were the Sun-1 workstations. These were the very first Sun workstations and were provided at a discount to Berkeley and I got six of them. We also got Ethernet; before it became a commercial product 3 MB Ethernet — not even 10 MB at that time. We connected these six workstations together and there we had a distributed system. So we built our software on it to integrate all of the together to be a single system and the work would be distributed across different machines to get all the resources utilized — that was the foundation for all the work that followed.

How did you build on this foundation in practice and where does Utopia enter the picture?

1987 when I graduated with a PhD from Berkeley I became a professor in at the University of Toronto and part of a research group, which was where we developed the technology software we then developed on top of the prototype I did at Berkeley. This was called Utopia — so you can tell it’s totally unrealistic, right (laughs)… It’s the ideal system that researchers are supposed  to have, right? You have to imagine and dream and if the ideas are too practical they cannot break the boundaries and innovate beyond the current norm, right?

By 1990, the Utopia software that targeted sharing resources and loads across large heterogeneous systems (and that time it was practically thousands of computers or more) became internally used at Nortel. There they used it to run on 2000 HP workstations to do hardware design of their switch equipment and software development (software system of one million lines of code — large scale testing, scaling and development) they used our software to integrate 2000 HP workstations to create a system to replace the dozen IBM mainframes they were using.

Other than writing software and supporting developers, it was also very suitable for testing, simulation and so on — but to use it effectively you can’t use it manually-you must use it automatically to get the results in time. When you start doing that the users start to have more work demands, the users then naturally have conflicts. So then you need to have policies to arbitrate about which users use how much of the resource — it is then all based on priorities and that is how we were able to manage that complexity. So in essence, the Utopia software became the CEO of all the systems at Nortel supporting all the users. 

So Nortel used this before Platform was actually a company — if that is the case where, how, and under what conditions did your actual business begin?

Nortel was 1990. In 1992 when we started the company, the first commercial customer we had was Pratt Whitney. They were designing the Boeing 777 engine. So to build the engines they need to determine the structure, the propulsion, the fuel consumption, etc. using simulations. At that time, they were using one Cray supercomputer rather than IBM mainframes to do it — and every night they would run one job. One job! Per night! Using that one Cray they had to explore all the parameters — how big or small, how many blades, and so on — all the design alternatives; that takes dozens and dozens of runs. They had to run half a year, which is of course a big problem for their product cycle to serve the airlines and their customers.

One clever engineer there saw that it was possible to harness 20-30 Sun workstations to run these simulations overnight. So one workstation might be running CAD but at 4:00 when all the designers would go home and the machines would just sit idle. So he used our software to manage all these resources and run this parallel simulation for engine design. In this way he was able to run dozens of jobs each night.

From then on, the adoption of clusters and grid started expanding across all verticals where people were using computers to design products or services.

At that time, we were the first commercial company with a focus of providing this infrastructure management software for these cluster type environment so we became dominant. There were some open source and then over time there was a package called Sun Grid Engine for workload scheduling and a package called open source PBS but they tended to be low-end and smaller with less functionality so therefore for medium and large commercial enterprise, we started dominating the market.

So if we back up a little, how did the company actually get its start — secure the space so you could engage some of the early adopters like Nortel and Pratt Whitney?

If you look at the IT industry, we are a really unusual company. You see, when we started this company we had very little interest in starting a company.

I took half a year in 1992 talking to HP, Sun, IBM to provide 100 million in funding for equipment for our lab in Toronto to get them to commercialize it. Nobody did. They seemed to not understand or maybe they were afraid that by sharing the resources the utilization would increase, which meant that people could work done with much less hardware — they just didn’t take it.

Therefore, as professors, our choice was to publish papers and look really smart and move on to the next thing. So we decided to put our efforts into this all the way and do it ourselves and we decided to start a company. Nortel and Pratt Whitney were telling us, please start a company, we’ll support you — these were the early adopters. Classic enterprise early adopters.

We have been profitable every year. The first year we were profitable. That means that there was clear customer value here. If you are very clearly focused on delivering this kind of value then you can do this without external funding. It is discipline — you are not earning money casually. You are delivering real value.

It sounds like the key word in Platform’s history is focus. It was born out of a focus on a solution to a particular problem and stayed allied to certain focused industries — and always on the large-scale enterprise. How did you maintain that focus over Platform’s 18 years or has it changed with the emergence of new ways thinking about enterprise HPC?

HPC is used by all kinds of people; weather services, government agencies, chemical companies — we found that the two initial companies we worked with was where the emphasis should be. We dominated in the electronics and manufacturing (aerospace and automotive) the large majority of automotive and aerospace companies are our customers. These are the two first bowling pins — the early adopters — the company has always been focused on the large-scale commercial side versus the public domain research labs. Where we play a lot, but the foundation and focus is to deliver value to large commercial enterprises who want to have a competitive return on their investment. And this has not changed — it has always been the same.

The initial vertical expanded in the mid-1990s. the human genome project was happening so there was a commercial company called Solara and two research institutes that were both our customers to do genome mapping so from there we expanded into the pharmaceutical industry where companies were using computers to design drug therapies rather than test tubes and chemicals. We then followed the market on to financial services where they were doing more modeling and analysis for risk management among other things. This was after 2000 — and the expansion of clusters began to really accelerate.

In 2000 we started seeing the convergence of the internet and the shared computing model of delivering services. With internet being the communication and resource integration medium for hardware in and with management applications being shared beyond the corporation, we entered into what we called the grid. That is the basis of the cloud trend now except the word that got adopted was “cloud” and not “grid” but content is essentially the same

All of these leads into the present moment; can you describe this transition from grid to what exists now — the early stage of private cloud, at least in terms of Platform’s view of it?

Fast forward to the present with adoption of this commodity-based distributed computing as the norm in HPC rather than big vector supercomputers or big server and now the enterprise applications, starting with the business intelligence analytics to all enterprise application servers behind the http web is all moving to this commodity environment, thus the management infrastructure becomes critical for these applications just like before and in parallel you see the emergence of cloud and for medium to large enterprise, the focus is private cloud.

How does this fit into the context of your private cloud management theories and Platform ISF, for instance?

Core concept is now widely understood and users are high-level but there are very few products that implement end-to-end and very few enterprises are using it in production. So we have found ourselves again, after 18 years, on the first wave of the adoption of the overall distributed computing and management infrastructure. The core basis of the private cloud is to build upon the clusters to make the resources dynamic so resources can be reprovisioned to meet the application resource demand. This can be done within the enterprise data centers and also beyond. That’s the essence behind this private cloud management software. It integrates and refactors all these resources to make them available and delivered as services to run whatever applications and make the response time of delivering resources in seconds or minutes rather than weeks or months. In parallel, maximizing resources so costs are reduced and alleviating the management bulk so you don’t have too many system admin costs associated.

What is the next step in private cloud?

I think the private cloud is in the emerging stages. I think it is the next big wave of IT infrastructure and is also representative of the maturation of the IT industry as a whole. Beyond that, I don’t think there will be fundamental change, black and white, but the industry will mature. Just like any other industry — everything will become a set of mature business services. Think about it this way: you go on a trip, of course you don’t need to own a plane, don’t need to know how flights are scheduled or where the fuel comes from — you just get the core basic business service and are presented with your choice of the time, the airline, first or second class — you pay for the value as you go, as you need it. This is the cloud model. It’s the early stage so it’s a tremendous amount of work but we’re working to the maturation of HPC.

It is still the early stage, as you say, of this change in IT, so for Platform — and in your own opinion — what are the biggest challenges you’re up against?

Let’s face it; first, cloud came about after HPC is established and mature, thus cloud is not essential to HPC. Virtual machines are have not been essential. HPC users are wary about them because it’s one more layer of complexity and overhead. They have their hands full already. Unlike in enterprise where cloud becomes a key point to make a change, HPC has accomplished a lot of the same thing without it. On the other hand, cloud is highly complementary and supplemental to what’s already been done in HPC because it provides greater flexibility of resources and the opportunity of not having to own the resources to get the resources. This gives a lot of technologies and business advantage and has the potential to make HPC easier to use and more cost-effective, thus we will see more widespread use of HPC without the user even knowing it is HPC.

That will drive the market to continually expand HPC and make it more cost effective for using HPC technologies — cloud provides this big boost.

Platform seems to have a particularly viable business model. Is it the same one you started with, back when you didn’t have external capital and were essentially bootstrapping operations or has it changed significantly to meet changes in the industry?

Platform, as a leader in HPC and now, cloud management, has been evolving to drive the market. When we first started we didn’t have any salespeople. But there was strong synergy after we started the company with the vendors because at that time they started realizing there was a business in selling commodity clusters and servers but they needed software to go with it — we formed partnership with HPC, Compaq, IBM, and then more recently, with Dell to enable them to sell a cluster system rather than a bunch of disparate boxes. So from the beginning our key was to create these kinds of partnerships. That allowed us to grow without a lot of in-house expertise to sell and market while letting us concentrate on our core competencies.

The weakness at the beginning was the marketing, not the technology. We became partners of system vendors and enabled them to sell clusters since users could now feasibly buy their systems. We helped enable all these ecosystem partners deliver compute capacity and applications.

In the 90s we started building a direct sales force because we found that as people move beyond isolated cluster applications running on commodity hardware it was clear they needed enterprise grid. In this, all the systems are integrated together throughout the corporation all the resources are shared to run all the applications across the board. Enterprise grid is run by corporate IT and that is the beginning — the very beginning — of private cloud, the only difference is that the resources were static versus dynamic.

I remember in 1994 I was nearing my sixth meeting of the day, I was eating lunch in my car — I was giving presentations to chip companies one after another. I felt like a preacher! This preacher is not cheating his audience; what I talked about to these people, we discussed how to do it…we showed them how to make it happen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Leading Solution Providers

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This