PathScale Looks to One-Up CUDA, OpenCL with New GPU Compiler

By Michael Feldman

June 24, 2010

HPC compiler maker PathScale has unveiled ENZO, a new GPU software development suite aimed at the high performance computing space. The solution includes a home-grown compiler, runtime system, and device driver. ENZO is being built for performance from top to bottom and will initially target NVIDIA’s high-end GPUs.

Up until now, users looking to exploit graphics processor acceleration for technical computing had to rely on either NVIDIA’s CUDA software stack or OpenCL implementations (from AMD or NVIDIA). Although a number of high-level language implementations have been built on top of these lower level interfaces, PathScale will be the first vendor to offer a complete third-party development stack for GPU computing developers.

PathScale, you’ll remember, was resurrected following the August 2009 dissolution of SiCortex, which had purchased the compiler technology from QLogic two years earlier. Thanks to the support of Cray and some creative financing, the PathScale team was reassembled after SiCortex went belly up. PathScale’s main products today include C/C++ and Fortran compilers for AMD and Intel x86 CPUs.

According to PathScale CTO Christopher Bergström, interest in doing a GPU compiler began shortly after the company rebooted last year. Since NVIDIA was leading the GPGPU charge, they started with the idea of targeting the Tesla GPU line. Hoping to reuse some of NVIDIA’s CUDA stack, they quickly found that the code generator and driver were not optimized for performance computing. “Their drivers, which really dictate quite a bit of what you can do, are supporting everything from gaming to HPC,” says Bergström. “It’s not that they haven’t built a good solution. It’s just not focused enough for HPC.”

Moreover, they found writing CUDA code for performance tedious, requiring a lot of programmer hand-holding to optimize performance. In particular, the PathScale engineers found that the register usage pattern in the CUDA compiler was generalized for all types of GPU cards, so performance opportunities for Tesla were simply missed.

In any case, says Bergström, “we didn’t have permission to use CUDA, and we thought OpenCL sucked.” So PathScale set out to write their own compiler/runtime/driver stack. Unfortunately NVIDIA’s GPU ISA is one of the company’s closely guarded secrets and most programmers only get access to the hardware through software interface abstractions, like CUDA, OpenCL, OpenGL, PTX , or DirectX. NVIDIA is happy to support implementations for all of these, but that eliminates the option of third-party compiler developers controlling the lowest level code generation.

So instead they tapped an open source NVIDIA graphics driver — Nouveau, which is included in the Linux kernel — and created a fork off the source code with high performance computing in mind. PathScale also managed to recruit most of the talent from the driver project. Bergström says the team was able to reverse engineer the NVIDIA ISA, register details, and device exception handling. With that knowledge, they set out to rewrite the code generator (compiler back-end), driver, and runtime, focusing on improved memory management, error handling, security and HPC-specific features, and performance.

The twist here is that GPU ISA is volatile — at least more so than say a CPU. Fortunately, the instruction and register enhancements tend to be incremental. Bergström says they will support all the latest GPU cards being used for HPC, that is, essentially all the cards supported in the three generations of Tesla products. PathScale has a working pre-“Fermi” driver now and is working on the compiler port. “We just got access to the hardware last month,” explains Bergström. “So we’ve basically had 30 days to start tackling the ISA and the registers.” He predicts they’ll have a fairly robust Fermi port within the next 60 to 90 days.

For the GPU compiler front-end, PathScale decided to use a directives-based approach, in which programmers can instrument source code to tell the compiler to parallelize specific code regions for the GPU. The directives approach offers vendor and device independence, while allowing developers to make incremental changes to their source code as they identify more regions for GPU acceleration. OpenMP uses the same directives model for shared-memory parallelization.

PathScale opted for HMPP directives, a set of directives invented by CAPS Enterprise for their C and Fortran GPU compilers. In the CAPS products though, the compiler just converts the HMPP C or HMPP Fortran to CUDA, which is subsequently converted into GPU assembly by NVIDIA’s CUDA back-end. PathScale, on the other hand, has attached their own back-end onto the HMPP front-end without losing any information between source-to-source translations.

The other part of the story is that CAPS, along with PathScale (and some as yet unannounced players) have decided to make the HMPP directives an open standard. The idea here is to attract application developers and tool makers to a standardized GPU programming model which protects their investment but is still targeted at gaining best performance.

Bergström is careful not to claim performance superiority over the CUDA technology just yet. He says ENZO is currently in the alpha or early beta stage. According to him, PathScale engineers have hand-tuned some code using GPU assembly, and have achieved a 15 to 30 percent (or better) performance boost. In other cases, they’re not quite there and need to find the right optimizations. Bergström is confident that those hand-coded optimizations can be incorporated into the compiler infrastructure. They have identified a number of areas where they can reduce register pressure, hide latency, reduce stalls and improve instruction scheduling. “We know the performance is there,” says Bergström.

The alpha/early beta version is now available for selected customers, with the production compiler suite slated for release later this summer. According to Bergström, over the next year, PathScale will be investing heavily in improving the GPGPU programming model. “People shouldn’t have to worry about thread synchronization or register memory bank conflicts,” he says. “The compiler will just handle that. Ultimately we want to have a fully automatic solution.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This