PathScale Looks to One-Up CUDA, OpenCL with New GPU Compiler

By Michael Feldman

June 24, 2010

HPC compiler maker PathScale has unveiled ENZO, a new GPU software development suite aimed at the high performance computing space. The solution includes a home-grown compiler, runtime system, and device driver. ENZO is being built for performance from top to bottom and will initially target NVIDIA’s high-end GPUs.

Up until now, users looking to exploit graphics processor acceleration for technical computing had to rely on either NVIDIA’s CUDA software stack or OpenCL implementations (from AMD or NVIDIA). Although a number of high-level language implementations have been built on top of these lower level interfaces, PathScale will be the first vendor to offer a complete third-party development stack for GPU computing developers.

PathScale, you’ll remember, was resurrected following the August 2009 dissolution of SiCortex, which had purchased the compiler technology from QLogic two years earlier. Thanks to the support of Cray and some creative financing, the PathScale team was reassembled after SiCortex went belly up. PathScale’s main products today include C/C++ and Fortran compilers for AMD and Intel x86 CPUs.

According to PathScale CTO Christopher Bergström, interest in doing a GPU compiler began shortly after the company rebooted last year. Since NVIDIA was leading the GPGPU charge, they started with the idea of targeting the Tesla GPU line. Hoping to reuse some of NVIDIA’s CUDA stack, they quickly found that the code generator and driver were not optimized for performance computing. “Their drivers, which really dictate quite a bit of what you can do, are supporting everything from gaming to HPC,” says Bergström. “It’s not that they haven’t built a good solution. It’s just not focused enough for HPC.”

Moreover, they found writing CUDA code for performance tedious, requiring a lot of programmer hand-holding to optimize performance. In particular, the PathScale engineers found that the register usage pattern in the CUDA compiler was generalized for all types of GPU cards, so performance opportunities for Tesla were simply missed.

In any case, says Bergström, “we didn’t have permission to use CUDA, and we thought OpenCL sucked.” So PathScale set out to write their own compiler/runtime/driver stack. Unfortunately NVIDIA’s GPU ISA is one of the company’s closely guarded secrets and most programmers only get access to the hardware through software interface abstractions, like CUDA, OpenCL, OpenGL, PTX , or DirectX. NVIDIA is happy to support implementations for all of these, but that eliminates the option of third-party compiler developers controlling the lowest level code generation.

So instead they tapped an open source NVIDIA graphics driver — Nouveau, which is included in the Linux kernel — and created a fork off the source code with high performance computing in mind. PathScale also managed to recruit most of the talent from the driver project. Bergström says the team was able to reverse engineer the NVIDIA ISA, register details, and device exception handling. With that knowledge, they set out to rewrite the code generator (compiler back-end), driver, and runtime, focusing on improved memory management, error handling, security and HPC-specific features, and performance.

The twist here is that GPU ISA is volatile — at least more so than say a CPU. Fortunately, the instruction and register enhancements tend to be incremental. Bergström says they will support all the latest GPU cards being used for HPC, that is, essentially all the cards supported in the three generations of Tesla products. PathScale has a working pre-“Fermi” driver now and is working on the compiler port. “We just got access to the hardware last month,” explains Bergström. “So we’ve basically had 30 days to start tackling the ISA and the registers.” He predicts they’ll have a fairly robust Fermi port within the next 60 to 90 days.

For the GPU compiler front-end, PathScale decided to use a directives-based approach, in which programmers can instrument source code to tell the compiler to parallelize specific code regions for the GPU. The directives approach offers vendor and device independence, while allowing developers to make incremental changes to their source code as they identify more regions for GPU acceleration. OpenMP uses the same directives model for shared-memory parallelization.

PathScale opted for HMPP directives, a set of directives invented by CAPS Enterprise for their C and Fortran GPU compilers. In the CAPS products though, the compiler just converts the HMPP C or HMPP Fortran to CUDA, which is subsequently converted into GPU assembly by NVIDIA’s CUDA back-end. PathScale, on the other hand, has attached their own back-end onto the HMPP front-end without losing any information between source-to-source translations.

The other part of the story is that CAPS, along with PathScale (and some as yet unannounced players) have decided to make the HMPP directives an open standard. The idea here is to attract application developers and tool makers to a standardized GPU programming model which protects their investment but is still targeted at gaining best performance.

Bergström is careful not to claim performance superiority over the CUDA technology just yet. He says ENZO is currently in the alpha or early beta stage. According to him, PathScale engineers have hand-tuned some code using GPU assembly, and have achieved a 15 to 30 percent (or better) performance boost. In other cases, they’re not quite there and need to find the right optimizations. Bergström is confident that those hand-coded optimizations can be incorporated into the compiler infrastructure. They have identified a number of areas where they can reduce register pressure, hide latency, reduce stalls and improve instruction scheduling. “We know the performance is there,” says Bergström.

The alpha/early beta version is now available for selected customers, with the production compiler suite slated for release later this summer. According to Bergström, over the next year, PathScale will be investing heavily in improving the GPGPU programming model. “People shouldn’t have to worry about thread synchronization or register memory bank conflicts,” he says. “The compiler will just handle that. Ultimately we want to have a fully automatic solution.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high-end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This