PathScale Looks to One-Up CUDA, OpenCL with New GPU Compiler

By Michael Feldman

June 24, 2010

HPC compiler maker PathScale has unveiled ENZO, a new GPU software development suite aimed at the high performance computing space. The solution includes a home-grown compiler, runtime system, and device driver. ENZO is being built for performance from top to bottom and will initially target NVIDIA’s high-end GPUs.

Up until now, users looking to exploit graphics processor acceleration for technical computing had to rely on either NVIDIA’s CUDA software stack or OpenCL implementations (from AMD or NVIDIA). Although a number of high-level language implementations have been built on top of these lower level interfaces, PathScale will be the first vendor to offer a complete third-party development stack for GPU computing developers.

PathScale, you’ll remember, was resurrected following the August 2009 dissolution of SiCortex, which had purchased the compiler technology from QLogic two years earlier. Thanks to the support of Cray and some creative financing, the PathScale team was reassembled after SiCortex went belly up. PathScale’s main products today include C/C++ and Fortran compilers for AMD and Intel x86 CPUs.

According to PathScale CTO Christopher Bergström, interest in doing a GPU compiler began shortly after the company rebooted last year. Since NVIDIA was leading the GPGPU charge, they started with the idea of targeting the Tesla GPU line. Hoping to reuse some of NVIDIA’s CUDA stack, they quickly found that the code generator and driver were not optimized for performance computing. “Their drivers, which really dictate quite a bit of what you can do, are supporting everything from gaming to HPC,” says Bergström. “It’s not that they haven’t built a good solution. It’s just not focused enough for HPC.”

Moreover, they found writing CUDA code for performance tedious, requiring a lot of programmer hand-holding to optimize performance. In particular, the PathScale engineers found that the register usage pattern in the CUDA compiler was generalized for all types of GPU cards, so performance opportunities for Tesla were simply missed.

In any case, says Bergström, “we didn’t have permission to use CUDA, and we thought OpenCL sucked.” So PathScale set out to write their own compiler/runtime/driver stack. Unfortunately NVIDIA’s GPU ISA is one of the company’s closely guarded secrets and most programmers only get access to the hardware through software interface abstractions, like CUDA, OpenCL, OpenGL, PTX , or DirectX. NVIDIA is happy to support implementations for all of these, but that eliminates the option of third-party compiler developers controlling the lowest level code generation.

So instead they tapped an open source NVIDIA graphics driver — Nouveau, which is included in the Linux kernel — and created a fork off the source code with high performance computing in mind. PathScale also managed to recruit most of the talent from the driver project. Bergström says the team was able to reverse engineer the NVIDIA ISA, register details, and device exception handling. With that knowledge, they set out to rewrite the code generator (compiler back-end), driver, and runtime, focusing on improved memory management, error handling, security and HPC-specific features, and performance.

The twist here is that GPU ISA is volatile — at least more so than say a CPU. Fortunately, the instruction and register enhancements tend to be incremental. Bergström says they will support all the latest GPU cards being used for HPC, that is, essentially all the cards supported in the three generations of Tesla products. PathScale has a working pre-“Fermi” driver now and is working on the compiler port. “We just got access to the hardware last month,” explains Bergström. “So we’ve basically had 30 days to start tackling the ISA and the registers.” He predicts they’ll have a fairly robust Fermi port within the next 60 to 90 days.

For the GPU compiler front-end, PathScale decided to use a directives-based approach, in which programmers can instrument source code to tell the compiler to parallelize specific code regions for the GPU. The directives approach offers vendor and device independence, while allowing developers to make incremental changes to their source code as they identify more regions for GPU acceleration. OpenMP uses the same directives model for shared-memory parallelization.

PathScale opted for HMPP directives, a set of directives invented by CAPS Enterprise for their C and Fortran GPU compilers. In the CAPS products though, the compiler just converts the HMPP C or HMPP Fortran to CUDA, which is subsequently converted into GPU assembly by NVIDIA’s CUDA back-end. PathScale, on the other hand, has attached their own back-end onto the HMPP front-end without losing any information between source-to-source translations.

The other part of the story is that CAPS, along with PathScale (and some as yet unannounced players) have decided to make the HMPP directives an open standard. The idea here is to attract application developers and tool makers to a standardized GPU programming model which protects their investment but is still targeted at gaining best performance.

Bergström is careful not to claim performance superiority over the CUDA technology just yet. He says ENZO is currently in the alpha or early beta stage. According to him, PathScale engineers have hand-tuned some code using GPU assembly, and have achieved a 15 to 30 percent (or better) performance boost. In other cases, they’re not quite there and need to find the right optimizations. Bergström is confident that those hand-coded optimizations can be incorporated into the compiler infrastructure. They have identified a number of areas where they can reduce register pressure, hide latency, reduce stalls and improve instruction scheduling. “We know the performance is there,” says Bergström.

The alpha/early beta version is now available for selected customers, with the production compiler suite slated for release later this summer. According to Bergström, over the next year, PathScale will be investing heavily in improving the GPGPU programming model. “People shouldn’t have to worry about thread synchronization or register memory bank conflicts,” he says. “The compiler will just handle that. Ultimately we want to have a fully automatic solution.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This