The Week in Review

By Tiffany Trader

December 2, 2010

Here is a collection of highlights from this week’s news stream as reported by HPCwire.

German GPU-CPU Supercomputer Managed with Bright Cluster Manager

T-Platforms to Build Russia’s First Petaflops Supercomputer

HyperTransport Consortium Unveils HyperShare Platform

CERN Selects Brocade to Bolster Network Performance and Support Growth Plans

Scientists Ratchet Up Understanding of Cellular Protein Factory

AMD and Industry Leaders Demonstrate ATI FirePro Professional Graphics Momentum at Autodesk University 2010

Jaguar Pounces on Child Predators

Argonne Selects Allinea Software to Improve Debugging Performance Scalability on Blue Gene/P

RenderStream Announces 12 Teraflop Systems

Siemens Intends to Intensify the Development of Industrial Software

Mellanox to Acquire Voltaire for $218 Million

Blue Waters Staff, Partners Bring Home Awards from SC10

Short, On-Chip Light Pulses Will Enable Ultrafast Data Transfer Within Computers

Cancer Research UK, Imperial College London Celebrate HPC Supercomputing Successes

Startup Dezineforce Launches ‘Black Box’ Technical Computing Server

2010 INCITE Awards Announced

The 2010 “INCITE” Program awards were announced this week, and they’re the largest yet — nearly 1.7 billion processor hours on the Department of Energy’s world-class supercomputers will be shared among 57 research projects. This year’s INCITE program brings us a step closer to scientific breakthroughs in biofuels, nuclear power, medicine and climate change. To help explain the significance of the award to the non-technical among us, the announcement cited a combined computing power equal to 135,000 quad-core laptops. The 57 winning applicants will be able to perform simulations and virtual experiments that would otherwise be impractical in the “real” world.

U.S. Energy Secretary Steven Chu, who announced the awards, made the following statement: “The Department of Energy’s supercomputers provide an enormous competitive advantage for the United States. This is a great example of how investments in innovation can help lead the way to new industries, new jobs, and new opportunities for America to succeed in the global marketplace.”

The projects include both academic and commercial endeavors. Partnerships with companies such as GE and Boeing are in place that use advanced computer modeling for the development of better wind turbines and jet engines. Other projects will work toward designing more efficient solar cells, developing fusion energy systems, and increasing the effectiveness of medications for slowing the progression of Parkinson’s disease.

The Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program is the U.S. government’s premier supercomputing allocation. It is open to all scientists and projects are selected competitively based on their potential to advance scientific discovery. INCITE is supported by the DOE’s Office of Science and managed by the DOE Leadership Computing Facilities at the Department’s Argonne and Oak Ridge National Laboratories.

The Oak Ridge Leadership Computing Facility (OLCF) at Oak Ridge National Laboratory has been awarded 950 million processor hours and will host thirty projects with the power of the Jaguar supercomputer, a Cray XT5 capable of 2.33 petaflops of peak performance power.

Four projects from Argonne National Laboratory have been awarded a total of 65 million hours of computing time on Argonne’s Blue Gene/P (“Intrepid”) supercomputer. As well, Argonne scientists will participate in six other projects (led by other instutions).

Going back to the laptop comparison, Jaguar has a computational capacity of approximately 109,000 laptops, and Intrepid is roughly equivalent to 26,000 laptops.

OLCF Director of Science Bronson Messer, remarked on the high quality of the submissions: “This year’s group of proposals was probably the best we’ve seen to date. The final list of awardees is a collection of projects that we believe will have remarkably high scientific impact through the use of leadership computing resources.”

A detailed listing of awards is available here (PDF).

Optical Chip Technology from IBM Could Be Key Exascale Enabler

IBM researchers have announced a breakthrough that allows computer chips to communicate using pulses of light instead of electrical signals. The new technology — called CMOS Integrated Silicon Nanophotonics — integrates electrical and optical devices on the same piece of silicon, resulting in smaller, faster and more power-efficient processors.

Nanoscale silicon photonics offers immense technical advantages over current copper interconnect technologies and promises to meet the increasing bandwidth demands of high-performance computing systems. Indeed, this latest advance could hold the key to exascale computing – supercomputers that are one thousand times faster than today’s petasflop-level machines.

This breakthrough comes after a decade of development at IBM’s global Research laboratories and signals a new era in chip communication. Placing optical devices and functions directly onto a silicon chip offers more than 10X improvement in integration density over current technologies. What’s more, the new chips can be manufactured in a standard CMOS foundry and do not require any special tools, making it cost-effective.

Dr. T.C. Chen, vice president of Science and Technology at IBM Research, reports:

“The development of the Silicon Nanophotonics technology brings the vision of on-chip optical interconnections much closer to reality. With optical communications embedded into the processor chips, the prospect of building power-efficient computer systems with performance at the exaflop level is one step closer to reality.”

In an article at PCWorld, Will Green, a silicon photonics research scientist at IBM, reported that this latest breakthrough puts IBM on course to building an exascale computer by 2020.

Dr. Yurii A. Vlasov, manager of the Silicon Nanophotonics Department at IBM Research, offers more details:

“Our CMOS Integrated Nanophotonics breakthrough promises unprecedented increases in silicon chip function and performance via ubiquitous low-power optical communications between racks, modules, chips or even within a single chip itself. The next step in this advancement is to establishing manufacturability of this process in a commercial foundry using IBM deeply scaled CMOS processes.”

IBM’s stated goal is to integrate ultra-compact nanophotonic circuits onto the die to allow for the manipulation of light signals similar to the way electrical signals are manipulated in computer chips. The end game here is the creation of a 3D-integrated chip, a viable next-generation chip technology that promises to postpone the much-prophesized death of Moore’s Law.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This