Climate Modelers Have Insatiable Appetite for HPC

By Steve Conway

March 14, 2011

Since the dawn of high performance computing, climate modeling has been one of its most demanding domains. The hunger for computational capability is unending, as researchers work to incorporate more of nature’s complexity into their models at higher resolutions. HPCwire talked with NOAA/GFDL Deputy Director Brian Gross and Venkatramani Balaji, head of the lab’s Modeling Systems Group.

HPCwire: How important have HPC-based modeling and simulation been in increasing human understanding of climate behavior and climate change?

Brian Gross: The climate system is inherently complex, measured by the number of processes and feedbacks between climate variables. It has interactions at all time and space scales, from minutes to millennia, and from millimeters to planet-scale. The role of HPC in addressing these inherent computational challenges to achieve the tremendous advances in our understanding of the Earth System cannot be overstated.

Venkatramani Balaji: In fact, Nature listed the first ocean-atmosphere coupled model — achieved by Suki Manabe, Kirk Bryan, and their collaborators at NOAA/GFDL in 1969 — as a milestone in scientific computing. That model, run on the HPC of the ’60s, was the first to show that adding CO2 to the atmosphere changes the radiative balance so as to increase surface temperatures. HPC-based modeling is the only science-based method to project future climate change.

HPCwire: In the 1990s, US climate researchers published a paper lamenting the lack of access to the most powerful supercomputers for climate modeling, which at that time were vector systems. Has anything been lost in the transition to non-vector supercomputers?

Gross: It turns out, no. On a scientific level, US labs without vector supercomputers kept pace with European and Japanese labs with vector machines. There is no evidence in hindsight that being denied access to vector machines hurt the US labs, whether measured in terms of scientific breakthroughs, or publications, or metrics of model skill.

Balaji: This is not to say that we went through the transition with no pain! The switch from vector to distributed memory machines was certainly disruptive and required a thorough technology refresh of the models. Labs had to expend a lot of effort recoding and then verifying that the new codes were capable of reproducing proven results.

Gross: We used the occasion also to instill better software engineering practices, and I think most people will agree that we’re the better for it. The models today are more agile and more configurable. We can build more complexity into our models than we were able to in the ’90s because of component-based design. We are now able to include atmospheric chemistry, aerosols, dynamic ecosystems on land and ocean, and we can study the complete Earth system. We couldn’t have done this very easily with models of the 1990 vintage.

HPCwire: What are the biggest challenges facing the climate modeling community today?

Gross: The principal challenges we face in climate modeling today remain the same as they have for decades: our limited understanding of the way the Earth System works, how accurately we can translate what we do know into computational algorithms and numerical models, quantifying uncertainty, and efficiently running our increasingly computationally intensive climate models on the largest HPC systems in the world.

It is worth pointing out that the direction of technology today, using more processors rather than faster processors, greatly favors weak scaling over strong scaling. The consequence is that we can often execute more complex, higher-resolution models at a fixed rate, as measured by, say, model years per day.

Balaji: But it’s much more difficult to execute a given model at a faster rate. This can often impede our scientific progress, given the very long time scales associated with some climate processes, such as the global ocean circulation and long-lived greenhouse gases like carbon dioxide. We’ll return to these challenges in a minute.

HPCwire: In the next few years, what are the goals for increased resolution of coupled earth system models?

Gross: The question of anthropogenic climate change on the scale of the planet is settled from a purely scientific viewpoint. However, understanding the details of climate change on a regional scale is harder. We’re not yet at a point where we can attribute local or regional climate change to human actions with the same confidence.

The goal for the current generation of IPCC-class models is to see if higher resolution yields better skill on regional scales. This is not a given. As processes that are currently unresolved become resolved, their representation in models changes from “parameterized” to “simulated.”

Balaji: There are key processes — for instance mesoscale eddies in the ocean, and deep convection in the atmosphere — that will undergo this transition over the next 5-10 years. Some current problems, such as cloud-climate feedback and ocean mixing, will be solved, but new ones might emerge. But certainly cloud-resolving and ocean-eddy-resolving coupled models promise to yield qualitatively new and exciting science.

HPCwire: What are the biggest barriers to greater scalability? Is it the codes, the models, or the limitations of the known science?

Balaji: All of these are barriers, but this list is incomplete. Why are hardware and system software not on your list? Our main difficulty is the speed of a single operation has not got faster for a while and is likely to become slower on the many-core and GPU cluster type systems. Compilers have not got any better for a long time at interpreting our codes, and are even more immature on the novel architectures.

Gross: The expectation had been that a given model at a given resolution would get faster over time just by advances in technology. We’ve just had a rude awakening.

Balaji: As an aside, I’d focus on time-to-solution rather than scalability per se. We all know tricks that make models run on more processors, yet take longer to reach the same solution. We class our models as 1 year/day models, 10 year/day models, and so on. Each can be used for a different class of scientific problem.

HPCwire: It seems that generational advances in computing power reduce uncertainty by enabling greater resolution, but adding new components to coupled models, such as for the carbon cycle, can offset these gains by increasing the complexity of the models? How do you balance these choices?

Gross: Good question. Our feeling is that the complexity comes first. When we feel we’ve reached a level of understanding of some process — say aerosol-cloud interactions, or dynamic vegetation — they get added to the models, and a new realm of scientific problem opens up. We then look at what hardware we can get with our computing budget, and that tells what resolutions we can use while achieving the target model years/day pace necessary for useful science.

HPCwire: How well do the atmospheric, oceanic and other components of coupled models and ensemble models “talk to” each other? How compatible are the physics and the scales in these models?

Balaji: We typically change one component at a time, so that you can do careful comparisons with previous results and trace differences back to a single component. But resolutions stay close, usually within a factor of two or so.

Not to say that the grids are the same. Atmosphere and ocean modelers have taken different routes to avoiding grid singularities and other numerical issues. Coupling technology is stable and mature. There are good, efficient, scalable, conservative coupling and regridding methods, but there’s always an open question as to whether they’ll keep scaling as we add resolution. Also, we’re not well situated to take advantage of AMR [adaptive mesh refinement], and so on. These methods are not much in use in the climate field today.

HPCwire: The goal is for the “Gaea” Cray XT6 supercomputer at ORNL to grow to a 720-teraflop Cray XE6 system in mid-2011. The plan is for “Gaea” to expand to 1.1 petaflops later on. What will these increases make possible?

Gross: Gaea puts within reach the eddy-resolving ocean models and cloud-resolving models we just spoke about. Separately, we’re already there. We believe we’ll be doing useful science with these models in coupled mode shortly after we get the full petaflop machine. Okay, maybe not cloud-resolving, but tropical storm-resolving.

Balaji: Additionally, we’re exploring predictability issues with our models. How sensitive are predictions to initial conditions? These studies explore probability distributions across ensembles of runs initialized with an advanced coupled data assimilation system. These will also stress the capacity of the machine.

Putting these two together, for predictability changes as a function of resolution, we could use up these cycles many times over. And I haven’t even mentioned the Earth System models, which apply this unique resource to substantially increase complexity,adding in atmospheric chemistry, fully interactive land-based ecosystem dynamics and carbon, nitrogen, and other biogeochemical cycles.

HPCwire: What elements of this supercomputer are especially important for weather and climate modeling?

Gross: We hope we’ve made it clear that we can now envision an unprecedented set of exciting science that was out of our reach before. The Cray SeaStar interconnect allows extraordinary levels of scaling, and we’re looking forward to seeing results on the Gemini upgrade, which should be even better.

HPCwire: How much of NOAA’s focus is on modeling weather and climate phenomena in the US, versus other areas of the world?

Balaji: All of our models are global, and the processes and feedbacks are linked on the planetary scale. It’s generally found that to get the climate right over the US, you do need to worry about clouds off the coast of Peru, or you need to get North Atlantic sea surface temperatures right to simulate drought in the Sahel, to take some prominent examples of global linkages. Some short runs are undertaken with regional models, but the fundamental basis of all research and operations is global models.

Gross: We are now configuring some variable resolution models such as the stretched cubed sphere, where resolution can be focused on the US, for instance.

HPCwire: There’s considerable pressure to reduce federal spending in every area possible. Why should strong funding for weather and climate modeling continue?

Gross: Just check out NOAA’s Next-Generation Strategic Plan. Climate change has already had profound implications for society, and climate model predictions and projections foretell a host of additional significant impacts both nationally and internationally.

We need the best possible science-based information on future climate so that decision-makers can develop and evaluate options that mitigate the human causes of climate change and allow society to adapt to foreseeable climate impacts. This information can only be obtained through state-of-the-science climate models. The cost of the associated HPC is trivial compared to the social gains from mitigation and adaptation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This