Climate Modelers Have Insatiable Appetite for HPC

By Steve Conway

March 14, 2011

Since the dawn of high performance computing, climate modeling has been one of its most demanding domains. The hunger for computational capability is unending, as researchers work to incorporate more of nature’s complexity into their models at higher resolutions. HPCwire talked with NOAA/GFDL Deputy Director Brian Gross and Venkatramani Balaji, head of the lab’s Modeling Systems Group.

HPCwire: How important have HPC-based modeling and simulation been in increasing human understanding of climate behavior and climate change?

Brian Gross: The climate system is inherently complex, measured by the number of processes and feedbacks between climate variables. It has interactions at all time and space scales, from minutes to millennia, and from millimeters to planet-scale. The role of HPC in addressing these inherent computational challenges to achieve the tremendous advances in our understanding of the Earth System cannot be overstated.

Venkatramani Balaji: In fact, Nature listed the first ocean-atmosphere coupled model — achieved by Suki Manabe, Kirk Bryan, and their collaborators at NOAA/GFDL in 1969 — as a milestone in scientific computing. That model, run on the HPC of the ’60s, was the first to show that adding CO2 to the atmosphere changes the radiative balance so as to increase surface temperatures. HPC-based modeling is the only science-based method to project future climate change.

HPCwire: In the 1990s, US climate researchers published a paper lamenting the lack of access to the most powerful supercomputers for climate modeling, which at that time were vector systems. Has anything been lost in the transition to non-vector supercomputers?

Gross: It turns out, no. On a scientific level, US labs without vector supercomputers kept pace with European and Japanese labs with vector machines. There is no evidence in hindsight that being denied access to vector machines hurt the US labs, whether measured in terms of scientific breakthroughs, or publications, or metrics of model skill.

Balaji: This is not to say that we went through the transition with no pain! The switch from vector to distributed memory machines was certainly disruptive and required a thorough technology refresh of the models. Labs had to expend a lot of effort recoding and then verifying that the new codes were capable of reproducing proven results.

Gross: We used the occasion also to instill better software engineering practices, and I think most people will agree that we’re the better for it. The models today are more agile and more configurable. We can build more complexity into our models than we were able to in the ’90s because of component-based design. We are now able to include atmospheric chemistry, aerosols, dynamic ecosystems on land and ocean, and we can study the complete Earth system. We couldn’t have done this very easily with models of the 1990 vintage.

HPCwire: What are the biggest challenges facing the climate modeling community today?

Gross: The principal challenges we face in climate modeling today remain the same as they have for decades: our limited understanding of the way the Earth System works, how accurately we can translate what we do know into computational algorithms and numerical models, quantifying uncertainty, and efficiently running our increasingly computationally intensive climate models on the largest HPC systems in the world.

It is worth pointing out that the direction of technology today, using more processors rather than faster processors, greatly favors weak scaling over strong scaling. The consequence is that we can often execute more complex, higher-resolution models at a fixed rate, as measured by, say, model years per day.

Balaji: But it’s much more difficult to execute a given model at a faster rate. This can often impede our scientific progress, given the very long time scales associated with some climate processes, such as the global ocean circulation and long-lived greenhouse gases like carbon dioxide. We’ll return to these challenges in a minute.

HPCwire: In the next few years, what are the goals for increased resolution of coupled earth system models?

Gross: The question of anthropogenic climate change on the scale of the planet is settled from a purely scientific viewpoint. However, understanding the details of climate change on a regional scale is harder. We’re not yet at a point where we can attribute local or regional climate change to human actions with the same confidence.

The goal for the current generation of IPCC-class models is to see if higher resolution yields better skill on regional scales. This is not a given. As processes that are currently unresolved become resolved, their representation in models changes from “parameterized” to “simulated.”

Balaji: There are key processes — for instance mesoscale eddies in the ocean, and deep convection in the atmosphere — that will undergo this transition over the next 5-10 years. Some current problems, such as cloud-climate feedback and ocean mixing, will be solved, but new ones might emerge. But certainly cloud-resolving and ocean-eddy-resolving coupled models promise to yield qualitatively new and exciting science.

HPCwire: What are the biggest barriers to greater scalability? Is it the codes, the models, or the limitations of the known science?

Balaji: All of these are barriers, but this list is incomplete. Why are hardware and system software not on your list? Our main difficulty is the speed of a single operation has not got faster for a while and is likely to become slower on the many-core and GPU cluster type systems. Compilers have not got any better for a long time at interpreting our codes, and are even more immature on the novel architectures.

Gross: The expectation had been that a given model at a given resolution would get faster over time just by advances in technology. We’ve just had a rude awakening.

Balaji: As an aside, I’d focus on time-to-solution rather than scalability per se. We all know tricks that make models run on more processors, yet take longer to reach the same solution. We class our models as 1 year/day models, 10 year/day models, and so on. Each can be used for a different class of scientific problem.

HPCwire: It seems that generational advances in computing power reduce uncertainty by enabling greater resolution, but adding new components to coupled models, such as for the carbon cycle, can offset these gains by increasing the complexity of the models? How do you balance these choices?

Gross: Good question. Our feeling is that the complexity comes first. When we feel we’ve reached a level of understanding of some process — say aerosol-cloud interactions, or dynamic vegetation — they get added to the models, and a new realm of scientific problem opens up. We then look at what hardware we can get with our computing budget, and that tells what resolutions we can use while achieving the target model years/day pace necessary for useful science.

HPCwire: How well do the atmospheric, oceanic and other components of coupled models and ensemble models “talk to” each other? How compatible are the physics and the scales in these models?

Balaji: We typically change one component at a time, so that you can do careful comparisons with previous results and trace differences back to a single component. But resolutions stay close, usually within a factor of two or so.

Not to say that the grids are the same. Atmosphere and ocean modelers have taken different routes to avoiding grid singularities and other numerical issues. Coupling technology is stable and mature. There are good, efficient, scalable, conservative coupling and regridding methods, but there’s always an open question as to whether they’ll keep scaling as we add resolution. Also, we’re not well situated to take advantage of AMR [adaptive mesh refinement], and so on. These methods are not much in use in the climate field today.

HPCwire: The goal is for the “Gaea” Cray XT6 supercomputer at ORNL to grow to a 720-teraflop Cray XE6 system in mid-2011. The plan is for “Gaea” to expand to 1.1 petaflops later on. What will these increases make possible?

Gross: Gaea puts within reach the eddy-resolving ocean models and cloud-resolving models we just spoke about. Separately, we’re already there. We believe we’ll be doing useful science with these models in coupled mode shortly after we get the full petaflop machine. Okay, maybe not cloud-resolving, but tropical storm-resolving.

Balaji: Additionally, we’re exploring predictability issues with our models. How sensitive are predictions to initial conditions? These studies explore probability distributions across ensembles of runs initialized with an advanced coupled data assimilation system. These will also stress the capacity of the machine.

Putting these two together, for predictability changes as a function of resolution, we could use up these cycles many times over. And I haven’t even mentioned the Earth System models, which apply this unique resource to substantially increase complexity,adding in atmospheric chemistry, fully interactive land-based ecosystem dynamics and carbon, nitrogen, and other biogeochemical cycles.

HPCwire: What elements of this supercomputer are especially important for weather and climate modeling?

Gross: We hope we’ve made it clear that we can now envision an unprecedented set of exciting science that was out of our reach before. The Cray SeaStar interconnect allows extraordinary levels of scaling, and we’re looking forward to seeing results on the Gemini upgrade, which should be even better.

HPCwire: How much of NOAA’s focus is on modeling weather and climate phenomena in the US, versus other areas of the world?

Balaji: All of our models are global, and the processes and feedbacks are linked on the planetary scale. It’s generally found that to get the climate right over the US, you do need to worry about clouds off the coast of Peru, or you need to get North Atlantic sea surface temperatures right to simulate drought in the Sahel, to take some prominent examples of global linkages. Some short runs are undertaken with regional models, but the fundamental basis of all research and operations is global models.

Gross: We are now configuring some variable resolution models such as the stretched cubed sphere, where resolution can be focused on the US, for instance.

HPCwire: There’s considerable pressure to reduce federal spending in every area possible. Why should strong funding for weather and climate modeling continue?

Gross: Just check out NOAA’s Next-Generation Strategic Plan. Climate change has already had profound implications for society, and climate model predictions and projections foretell a host of additional significant impacts both nationally and internationally.

We need the best possible science-based information on future climate so that decision-makers can develop and evaluate options that mitigate the human causes of climate change and allow society to adapt to foreseeable climate impacts. This information can only be obtained through state-of-the-science climate models. The cost of the associated HPC is trivial compared to the social gains from mitigation and adaptation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket for an optional 8087 math coprocessor. The math coprocessor ma Read more…

IonQ Reports Advance on Path to Networked Quantum Computing

February 22, 2024

IonQ reported reaching a milestone in its efforts to use entangled photon-ion connectivity to scale its quantum computers. IonQ’s quantum computers are based on trapped ions which feature long coherence times and qubit Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Apple. Today the consumer electronics giant started rolling Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to derive any substantial value from it. However, the GenAI hyp Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks – that builds on earlier work and is an eff Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Atom Computing Reports Advance in Scaling Up Neutral Atom Qubit Arrays

February 15, 2024

The scale-up challenge facing quantum computing (QC) is daunting and varied. It’s commonly held that 1 million qubits (or more) will be needed to deliver practical fault tolerant QC. It’s also a varied challenge beca Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

The Pulse of HPC: Tracking 4.5 Million Heartbeats of 3D Coronary Flow

February 15, 2024

Working in Duke University's Randles Lab, Cyrus Tanade, a National Science Foundation graduate student fellow and Ph.D. candidate in biomedical engineering, is Read more…

It Doesn’t Get Much SWEETER: The Winter HPC Computing Festival in Corpus Christi

February 14, 2024

(Main Photo by Visit Corpus Christi CrowdRiff) Texas A&M University's High-Performance Research Computing (HPRC) team hosted the "SWEETER Winter Comput Read more…

Q-Roundup: Diraq’s War Chest, DARPA’s Bet on Topological Qubits, Citi/Classiq Explore Optimization, WEF’s Quantum Blueprint

February 13, 2024

Yesterday, Australian start-up Diraq added $15 million to its war chest (now $120 million) to build a fault tolerant computer based on quantum dots. Last week D Read more…

2024 Winter Classic: Razor Thin Margins in HPL/HPCG

February 12, 2024

The first task for the 11 teams in the 2024 Winter Classic student cluster competition was to run and optimize the LINPACK and HPCG benchmarks. As usual, the Read more…

2024 Winter Classic: We’re Back!

February 9, 2024

The fourth edition of the Winter Classic Invitational Student Cluster Competition is up and running. This year, we have 11 teams of eager students representin Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire