Climate Modelers Have Insatiable Appetite for HPC

By Steve Conway

March 14, 2011

Since the dawn of high performance computing, climate modeling has been one of its most demanding domains. The hunger for computational capability is unending, as researchers work to incorporate more of nature’s complexity into their models at higher resolutions. HPCwire talked with NOAA/GFDL Deputy Director Brian Gross and Venkatramani Balaji, head of the lab’s Modeling Systems Group.

HPCwire: How important have HPC-based modeling and simulation been in increasing human understanding of climate behavior and climate change?

Brian Gross: The climate system is inherently complex, measured by the number of processes and feedbacks between climate variables. It has interactions at all time and space scales, from minutes to millennia, and from millimeters to planet-scale. The role of HPC in addressing these inherent computational challenges to achieve the tremendous advances in our understanding of the Earth System cannot be overstated.

Venkatramani Balaji: In fact, Nature listed the first ocean-atmosphere coupled model — achieved by Suki Manabe, Kirk Bryan, and their collaborators at NOAA/GFDL in 1969 — as a milestone in scientific computing. That model, run on the HPC of the ’60s, was the first to show that adding CO2 to the atmosphere changes the radiative balance so as to increase surface temperatures. HPC-based modeling is the only science-based method to project future climate change.

HPCwire: In the 1990s, US climate researchers published a paper lamenting the lack of access to the most powerful supercomputers for climate modeling, which at that time were vector systems. Has anything been lost in the transition to non-vector supercomputers?

Gross: It turns out, no. On a scientific level, US labs without vector supercomputers kept pace with European and Japanese labs with vector machines. There is no evidence in hindsight that being denied access to vector machines hurt the US labs, whether measured in terms of scientific breakthroughs, or publications, or metrics of model skill.

Balaji: This is not to say that we went through the transition with no pain! The switch from vector to distributed memory machines was certainly disruptive and required a thorough technology refresh of the models. Labs had to expend a lot of effort recoding and then verifying that the new codes were capable of reproducing proven results.

Gross: We used the occasion also to instill better software engineering practices, and I think most people will agree that we’re the better for it. The models today are more agile and more configurable. We can build more complexity into our models than we were able to in the ’90s because of component-based design. We are now able to include atmospheric chemistry, aerosols, dynamic ecosystems on land and ocean, and we can study the complete Earth system. We couldn’t have done this very easily with models of the 1990 vintage.

HPCwire: What are the biggest challenges facing the climate modeling community today?

Gross: The principal challenges we face in climate modeling today remain the same as they have for decades: our limited understanding of the way the Earth System works, how accurately we can translate what we do know into computational algorithms and numerical models, quantifying uncertainty, and efficiently running our increasingly computationally intensive climate models on the largest HPC systems in the world.

It is worth pointing out that the direction of technology today, using more processors rather than faster processors, greatly favors weak scaling over strong scaling. The consequence is that we can often execute more complex, higher-resolution models at a fixed rate, as measured by, say, model years per day.

Balaji: But it’s much more difficult to execute a given model at a faster rate. This can often impede our scientific progress, given the very long time scales associated with some climate processes, such as the global ocean circulation and long-lived greenhouse gases like carbon dioxide. We’ll return to these challenges in a minute.

HPCwire: In the next few years, what are the goals for increased resolution of coupled earth system models?

Gross: The question of anthropogenic climate change on the scale of the planet is settled from a purely scientific viewpoint. However, understanding the details of climate change on a regional scale is harder. We’re not yet at a point where we can attribute local or regional climate change to human actions with the same confidence.

The goal for the current generation of IPCC-class models is to see if higher resolution yields better skill on regional scales. This is not a given. As processes that are currently unresolved become resolved, their representation in models changes from “parameterized” to “simulated.”

Balaji: There are key processes — for instance mesoscale eddies in the ocean, and deep convection in the atmosphere — that will undergo this transition over the next 5-10 years. Some current problems, such as cloud-climate feedback and ocean mixing, will be solved, but new ones might emerge. But certainly cloud-resolving and ocean-eddy-resolving coupled models promise to yield qualitatively new and exciting science.

HPCwire: What are the biggest barriers to greater scalability? Is it the codes, the models, or the limitations of the known science?

Balaji: All of these are barriers, but this list is incomplete. Why are hardware and system software not on your list? Our main difficulty is the speed of a single operation has not got faster for a while and is likely to become slower on the many-core and GPU cluster type systems. Compilers have not got any better for a long time at interpreting our codes, and are even more immature on the novel architectures.

Gross: The expectation had been that a given model at a given resolution would get faster over time just by advances in technology. We’ve just had a rude awakening.

Balaji: As an aside, I’d focus on time-to-solution rather than scalability per se. We all know tricks that make models run on more processors, yet take longer to reach the same solution. We class our models as 1 year/day models, 10 year/day models, and so on. Each can be used for a different class of scientific problem.

HPCwire: It seems that generational advances in computing power reduce uncertainty by enabling greater resolution, but adding new components to coupled models, such as for the carbon cycle, can offset these gains by increasing the complexity of the models? How do you balance these choices?

Gross: Good question. Our feeling is that the complexity comes first. When we feel we’ve reached a level of understanding of some process — say aerosol-cloud interactions, or dynamic vegetation — they get added to the models, and a new realm of scientific problem opens up. We then look at what hardware we can get with our computing budget, and that tells what resolutions we can use while achieving the target model years/day pace necessary for useful science.

HPCwire: How well do the atmospheric, oceanic and other components of coupled models and ensemble models “talk to” each other? How compatible are the physics and the scales in these models?

Balaji: We typically change one component at a time, so that you can do careful comparisons with previous results and trace differences back to a single component. But resolutions stay close, usually within a factor of two or so.

Not to say that the grids are the same. Atmosphere and ocean modelers have taken different routes to avoiding grid singularities and other numerical issues. Coupling technology is stable and mature. There are good, efficient, scalable, conservative coupling and regridding methods, but there’s always an open question as to whether they’ll keep scaling as we add resolution. Also, we’re not well situated to take advantage of AMR [adaptive mesh refinement], and so on. These methods are not much in use in the climate field today.

HPCwire: The goal is for the “Gaea” Cray XT6 supercomputer at ORNL to grow to a 720-teraflop Cray XE6 system in mid-2011. The plan is for “Gaea” to expand to 1.1 petaflops later on. What will these increases make possible?

Gross: Gaea puts within reach the eddy-resolving ocean models and cloud-resolving models we just spoke about. Separately, we’re already there. We believe we’ll be doing useful science with these models in coupled mode shortly after we get the full petaflop machine. Okay, maybe not cloud-resolving, but tropical storm-resolving.

Balaji: Additionally, we’re exploring predictability issues with our models. How sensitive are predictions to initial conditions? These studies explore probability distributions across ensembles of runs initialized with an advanced coupled data assimilation system. These will also stress the capacity of the machine.

Putting these two together, for predictability changes as a function of resolution, we could use up these cycles many times over. And I haven’t even mentioned the Earth System models, which apply this unique resource to substantially increase complexity,adding in atmospheric chemistry, fully interactive land-based ecosystem dynamics and carbon, nitrogen, and other biogeochemical cycles.

HPCwire: What elements of this supercomputer are especially important for weather and climate modeling?

Gross: We hope we’ve made it clear that we can now envision an unprecedented set of exciting science that was out of our reach before. The Cray SeaStar interconnect allows extraordinary levels of scaling, and we’re looking forward to seeing results on the Gemini upgrade, which should be even better.

HPCwire: How much of NOAA’s focus is on modeling weather and climate phenomena in the US, versus other areas of the world?

Balaji: All of our models are global, and the processes and feedbacks are linked on the planetary scale. It’s generally found that to get the climate right over the US, you do need to worry about clouds off the coast of Peru, or you need to get North Atlantic sea surface temperatures right to simulate drought in the Sahel, to take some prominent examples of global linkages. Some short runs are undertaken with regional models, but the fundamental basis of all research and operations is global models.

Gross: We are now configuring some variable resolution models such as the stretched cubed sphere, where resolution can be focused on the US, for instance.

HPCwire: There’s considerable pressure to reduce federal spending in every area possible. Why should strong funding for weather and climate modeling continue?

Gross: Just check out NOAA’s Next-Generation Strategic Plan. Climate change has already had profound implications for society, and climate model predictions and projections foretell a host of additional significant impacts both nationally and internationally.

We need the best possible science-based information on future climate so that decision-makers can develop and evaluate options that mitigate the human causes of climate change and allow society to adapt to foreseeable climate impacts. This information can only be obtained through state-of-the-science climate models. The cost of the associated HPC is trivial compared to the social gains from mitigation and adaptation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This