Using In-Memory Data Grids for Global Data Integration

By Nicole Hemsoth

July 2, 2012

by Dr. William Bain, ScaleOut Software, Inc.

Introduction

By enabling extremely fast and scalable data access even under large and growing workloads, in-memory data grids (IMDGs) have proven their value in storing fast-changing application data. For example, Web server farms use IMDGs to hold and share large volumes of shopping carts under heavy Web loads. Applications in financial services use IMDGs to hold fast-changing stock trading data for processing orders or for quickly analyzing and responding to emerging market trends.

ScaleOut In Memory Servers

An increasing number of companies employ multiple data centers to distribute their workloads and mitigate the impact of catastrophic events such as earthquakes and floods. IMDGs can be used to complement disaster recovery strategies by continuously replicating changes to fast-changing grid-based data to remote sites. This enables fast recovery and resumption of processing without data loss after a disaster strikes.

The use of in-memory data grids has also created the opportunity for organizations to employ even more powerful global strategies for data sharing. As organizations work to efficiently access fast-changing data across multiple sites or scale their processing into the cloud, the need to quickly and seamlessly migrate data on demand has grown rapidly. For example, organizations that produce and store fast-changing data in multiple data centers need to be able to access and analyze data without regard to where it originates. Likewise, organizations that access the highly elastic resources of public clouds need an efficient way to restage data in the cloud for processing.

Because IMDGs are specifically designed to store fast-changing data, federating IMDGs across multiple sites and enabling seamless access to data among all federated sites provide an ideal solution to the challenge of global data access. The benefits are twofold. First, applications can efficiently access and update data simply by using the IMDG’s data access mechanisms without modification; the federated IMDGs handle all of the details of remote data access and coherent updating. Second, IMDGs provide the scalability and low latency required to enable applications to handle large workloads with fast responsiveness.

We describe the combined scenarios for data replication and sharing as global data integration. This article outlines how in-memory data grids easily can be deployed to implement key strategies for global data integration, and it describes the important benefits this technology brings to organizations with global reach.

Disaster Recovery

A solid disaster recovery strategy requires that if one data center goes offline, its workload can be handled by another healthy data center to avoid service interruptions. For this recovery strategy to be effective, changes to fast-changing application data must be continuously replicated to a remote site so that the site is immediately ready to handle the workload. An IMDG that includes site-to-site data replication to one or more IMDGs at remote sites can provide this important capability and thereby complement the data center’s other replication and recovery strategies. In addition, all data centers can be operated in a “live-live” configuration under normal operating conditions to make full use of all computing resources and avoid the need for an idle “stand-by” data center.

ScaleOut Disaster Recovery
 

Carefully integrating data replication technology into an IMDG’s software architecture enables it to deliver the performance and reliability needed to handle large, fast-changing workloads. It also enables this capability to be easily deployed and managed by IT administrators. ScaleOut GeoServer® DR from ScaleOut Software is an example of a technology that provides these capabilities.  Because it is designed to extend the scalable, highly available architecture of its underlying IMDG, ScaleOut StateServer® (SOSS), it automatically scales replication bandwidth as grid servers are added to handle growing workloads, and it automatically tolerates server failures without interrupting operations. Additionally, it provides management tools that allow IT staff to easily establish and monitor connections to remote sites.

Global Data Access

Beyond data replication for disaster recovery, global data integration provides a range of choices for federating data stored in IMDGs at multiple data centers and cloud sites. For example, multiple data centers can be integrated into a single virtual data grid to provide seamless access to data, regardless of where it is stored and where the access request originates. Also, multiple grids can be interconnected to provide automatic data migration and elastic scaling when needed.

ScaleOut Global Data Access To ensure that global data access can easily be integrated into applications, IMDGs can seamlessly incorporate global access into their data access mechanisms. This simplifies application design by making remote data access transparent and automatic. It also eliminates the need for applications to track where data is located and manually restage it for local access. As an example, ScaleOut GeoServer follows this approach by extending the APIs provided by ScaleOut StateServer to transparently access data on demand at a configured set of remote sites; all grid accesses proceed as if data were located in the application’s local IMDG. ScaleOut GeoServer automatically searches remote IMDGs for missing data and copies it into the local IMDG as needed.

“Mostly Read” Access

ScaleOut GeoServer gives applications fine-grained control over data sharing to ensure efficient use of wide area networks (WANs) and to support various usage models. In one important use case, described as “mostly read” access, applications primarily need to access certain remote data but not perform updates on that data. This type of remotely accessed data is typically static or slowly changing so that local copies only need infrequent refresh over the WAN. Examples could include product pricing information for Web sites or portfolio holdings in financial services.

ScaleOut GeoServer implements mostly-read access by creating a local copy of remotely accessed data and allowing the application to specify a policy for refreshing it. The use of a local copy keeps local reads fast and minimizes WAN usage. Individual data objects can be marked by the application either to be updated periodically or to be updated when a change occurs at the remote site. Called coherency policies, these rules allow applications to tailor WAN usage to the characteristics of the data being remotely accessed.

An example of mostly read access, consider a wealth management application that needs to update its portfolios with periodic price changes; prices for different investments are held in multiple data grids around the world. The application can use global data access to obtain and efficiently track prices, with updates flowing into its local IMDG at the frequency required by the application. Also, to minimize WAN usage, only the prices of investments specifically needed by the application are retrieved over the WAN.

ScaleOut Mostly Read Access 

“Read/Write” Access

In a second important use case called “read/write” access, remotely accessed data needs to be accessed and then updated, and updates by different sites need to be carefully synchronized.  Examples include shopping carts in a Web site or financial portfolios being managed (not just examined) at remote sites. These data types can be fast-changing, and it is imperative to synchronize updates to avoid corrupting vital application data.

To synchronize updates, data must migrate from site to site on demand and avoid the use of local copies which could become out of date. ScaleOut GeoServer implements data migration and read/write access by transparently incorporating it into the IMDG’s existing distributed locking mechanism, which has been extended to span multiple sites. The IMDG automatically migrates ownership of data from a remote site when it is locked for reading by the application. This ensures that updates are always performed locally and at exactly one site at a time. The application does not have to manually restage data across sites nor provide its own mechanism for global data synchronization.

As an example, consider a premise-hosted ecommerce Web farm that needs to scale into the cloud to handle high seasonal demand. To accomplish this, the Web site’s administrator reconfigures the IP load-balancer to distribute Web requests across both on-premise and cloud-based Web servers; this procedure is sometimes called “cloud bursting.” By using an IMDG capable of global data integration, all Web servers transparently and coherently retrieve and update shopping carts within a single, virtualized IMDG spanning both sites. The following diagram illustrates this scenario using ScaleOut StateServer (“SOSS”) IMDGs at both sites and ScaleOut GeoServer to provide automatic data migration.

ScaleOut Read/Write Access 

Combining Data Replication and Global Data Access

It is often useful to combine the capabilities described above for global data integration to simultaneously address multiple requirements. For example, two central data centers which hold data accessed by satellite data centers can use data replication for disaster recovery purposes. Both could handle live traffic as described above, but in the case of a data center failure all traffic is routed to the healthy data center. Applications running in satellite data centers can use global data access to retrieve and/or update data held in the two central data centers. These applications can access data from either data center and transparently receive it even if one of the central data centers goes down. As illustrated in the following diagram, this configuration demonstrates the power and flexibility of global data integration.

ScaleOut Benefits of a Virtual Data Grid 

Benefits of a Virtual Data Grid

As we have seen, the goals of global data integration are to replicate data for disaster recovery and to enable applications to transparently access data across multiple sites as needed. ScaleOut GeoServer’s implementation of global data integration accomplishes these goals by creating a virtual data grid that seamlessly federates in-memory data grids across multiple sites. This enables application developers to write programs which access all shared data from a single (local) IMDG, leaving the IMDG to implement the details of remote access and synchronization. After a minimal amount of configuration to connect to remote sites, changes to add or remove grid servers in any data center do not affect configuration of the virtual data grid. The virtual data grid is able to withstand and recover from WAN interruptions and other failure conditions without affecting applications.

This article has illustrated the power of global data integration to extend the reach of applications that manage data spanning multiple data centers. As we have seen, in-memory data grids (IMDGs) provide a fast, scalable storage repository for application data. Their mechanisms can be transparently extended to enable data replication for disaster recovery and global access to data held at remote sites. These capabilities open up important new scenarios for globally distributed applications and simplify their implementation. Now applications can seamlessly access data worldwide and extend their processing into the cloud to handle peak workloads. Managing geographically distributed data has never been easier.

 

Dr. William L. Bain is founder and CEO of ScaleOut Software, Inc. Bill has a Ph.D. in electrical engineering/parallel computing from Rice University, and he has worked at Bell Labs research, Intel, and Microsoft. Bill founded and ran three start-up companies prior to joining Microsoft. In the most recent company (Valence Research), he developed a distributed Web load-balancing software solution that was acquired by Microsoft and is now called Network Load Balanc­ing within the Windows Server operating system. Dr. Bain holds several patents in computer architecture and distributed computing. As a member of the Seattle-based Alliance of Angels, Dr. Bain is actively involved in entrepreneurship and the angel community.

www.scaleoutsoftware.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire