The Top Supercomputing Led Discoveries of 2013

By Nicole Hemsoth

January 2, 2014

2013 has been an incredible year for the entire ecosystem around supercomputing; from vendors pushing new technologies to boost performance, capacity, and programmability to researchers turning over new insights with fresh techniques. While exascale has taken more of a backseat than we might have predicted at the year’s end of 2010, there are plenty of signs that production HPC environments are blazing plenty of new trails.

As the calendar flips into 2014, we wanted to cast a backward glance at select discoveries and opportunities made possible by the fastest systems in the world and the people who run them—all pulled from our news archives of the past year along some important thematic lines.

We’ve pulled over 30 examples of how supercomputers are set to change the world in 2014 and beyond and while this list is anything but exhaustive, it does show how key segments in research and industry are evolving with HPC.

In a Galaxy Far, Far Away…

galaxyOne of the most famous “showcase” areas where HPC finds a mainstream shine is when news breaks of startling answers emerge to questions as big as “where do we come from” and “what is the universe made of.” As one might expect, 2013 was a banner year for discoveries that reached well beyond earth.

This year, Kraken at the National Institute for Computational Sciences (NICS) at the University of Tennessee Knoxville, addressed some large-scale, stubborn classical physics problems with revolutionary protoplanetary disk research while another massive system, the Opteron-powered “Hopper” Cray XE6 system that is part of the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Lab lit up the comos.

Back in October, a team of scientists from ETH Zurich and the University of Leeds solved a 300-year-old riddle about the nature of the Earth’s rotation. Using the Cray XE6 supercomputer “Monte Rosa” installed at CSCS, the researchers uncovered the reason for the gradual westward movement of the Earth’s magnetic field.

This past November, astrophysics researchers at UC San Diego advanced their understanding of star formation with the help of some major computational resources from San Diego Supercomputer Center (SDSC) at the UC San Diego and the National Institute for Computational Science (NICS) at Oak Ridge National Laboratory.

Researchers at the Universities of Leeds and Chicago harnessed supercomputing power to uncover an important mechanism behind the generation of astrophysical magnetic fields such as that of the sun. And researchers at the Institute for Computational Cosmology (ICC), are using HPC to model phenomena ranging from solar flares to the formation of galaxies. Others, including an NSF-supported team from the University of Iowa used 2013 and plenty of supercomputing might to measure space turbulence directly for the first time in the laboratory, allowing the world to finally see the dynamics behind it.

Some spent some of their year bolstering current resources to aid in new discoveries. For instance, a new 60 teraflops supercomputer and 1 petabyte high speed storage system recently installed on the campus of the University of California at Santa Cruz, which will give astrophysicists at the college the computational and storage headroom they need to model the heavens like never before.

Medical Discovery and Research

CONNECTOME3Ever-growing datasets fed by information from a widening pool of sources pushed medical research even further into supercomputing territory this year. The modeling and simulation requirements of viruses, genomic data, organ and

Supercomputing’s reach into the human brain was one of the most widely-cited research items in medical circles in 2013. This year the Human Brain Project was carried forward by a host of supporting institutions and systems and the topic was the subject of several lectures and keynotes that are worthy of reviewing before a fresh year begins.

Cancer research is another important field that is increasingly reliant on powerful systems. For instance, this year, researchers at Emory University reported a significant improvement in their ability to analyze and understand changes of cancer tumors over time thanks to HPC work done on a Keeneland Project supercomputer. Analysis of high resolution cancer tumor images that used to take weeks can now be completed in a matter of minutes on the hybrid GPU-CPU system.

Complex viruses, including HIV/AIDS were also the subject of a great deal of supercomputer-powered research this year. Researchers at the University of Illinois Urbana-Champaign have successfully modeled the interior of the HIV-1 virus using the Blue Waters system, opening the door to new antiretroviral drugs that target HIV-1, the virus that causes AIDS.

Other viruses, including malaria, were the target of additional innovative research. Pittsburgh Supercomputing Center (PSC) and the University of Notre Dame received up to $1.6 million in funding from the Bill & Melinda Gates Foundation to develop a system of computers and software for the Vector Ecology and Control Network (VECNet), an international consortium to eradicate malaria. The new VECNet Cyber-Infrastructure Project (CI) will support VECNet’s effort to unite research, industrial and public policy efforts to attack one of the worst diseases in the developing world in more effective, economical ways.

Armed with vaccines, however, viruses can be stopped in their tracks, assuming the delivery of such life-saving measures is done effectively. A supercomputer simulation of the West African nation of Niger showed that improving transportation as well could improve vaccine availability among children and mothers from roughly 50 percent to more than 90 percent.

On another front, researchers came a step closer to understanding strokes this year. A team from UC Berkeley and the University of California San Diego (UCSD) used the supercomputing resources of the National Energy Research Scientific Computing Center (NERSC) to model the efficacy of microbubbles and high intensity focused ultrasound (HIFU) for breaking up stroke-causing clots.

Other noteworthy advances powered by world-class systems emerged this year in medical areas as diverse as autism research and pushing new boundaries in medical physics. As ever-more computing capacity comes online in the coming year, we expect the diverse medical field to produce stunning stories and discoveries in 2014.

Climate Change and Earth Science

earfThe volumes of scientific support are growing in support of climate change, a process which has been powered by massive simulations, including those that put the changes in the context of global shifts over vast lengths of time.

For example, HPCwire’s Tiffany Trader wrote back in September on the “Climate Time Machine”, which relies on a database of extreme global weather events from 1871 to the present day, culled from newspaper weather reports, measurements on land and sea for the first decades along with more modern data. The team of top climate scientists fed the data into powerful supercomputers, including those at NERSC and the Oak Ridge Leadership Computing Facility in Tennessee, to create a virtual climate time machine. A sizable portion (12 percent) of the supercomputing resources at NERSC is allocated to global climate change research. That’s nearly 150 million processor-hours of highly-tuned computational might focused on an issue that is critical to humanity’s future.

New systems emerged to tackle climate change data. For instance, Berkeley Lab’s Green Flash is a specialized supercomputer designed to showcase a way to perform more detailed climate modeling. The system uses customized Tensilica-based processors, similar to those found in iPhones, and communication-minimizing algorithms that cut down on the movement of data, to model the movement of clouds around the earth at a higher resolution than was previously possible, without consuming huge amounts of electricity.

This year large-scale systems, like Blue Waters at NCSA, were used by a research team including Penn State engineers to enhance scientists’ understanding of global precipitation. The team used Blue Waters to tackle the problem of large gaps in precipitation data for large parts of the world. The goal is to help scientists and researchers move toward an integrated global water cycle observatory.

Other advances using new and enhanced data sources, including GIS, advanced satellite and emerging sensor technologies were made to aid research into other aspects of climate change. From an NCAR-led project to predict air pollution to others, the global climate change picture is filling in rapidly.

Manufacturing and Heavy Industry

planetcityManufacturing has been a notable target of investments on both the vendor and research fronts in 2013 as political rhetoric, changes in traditional manufacturing jobs, the need for STEM-based education to support a new manufacturing future and new technologies have all stepped up.

At the heart of industrial progress is a constant march toward more automation, efficiency and data-driven progress. As one might imagine, this offers significant opportunities for HPC modeling and simulation—not to mention for supercomputer-fed innovations in materials science, manufacturing processes and other areas.

Several facilities, including the Ohio Supercomputer Center, have lent helping hands to bring HPC to industry in 2013–and fresh efforts are springing up, including at Lawrence Livermore National Laboratory (LLNL). For instance, this year select industrial users had a crack at Vulcan, a 5 petafopper with 390,000 cores. With this, and a new host of commercial applications to tweak, LLNL is providing a much-needed slew of software and scaling support. The lab spent 2013 lining up participants to step to the high-core line to see how more compute horsepower can push modeling and simulation limits while solving specific scalability issues.

In July, companies interested in testing the latest in low-cost carbon fiber had a new opportunity to partner with the Department of Energy’s Carbon Fiber Technology Facility. The CFTF, operated by Oak Ridge National Laboratory as part of the Department’s Clean Energy Manufacturing Initiative, opened earlier this year to find ways to reduce carbon fiber production costs and to work with the private sector to stimulate widespread use of the strong, lightweight material.

Research was made into reality in a few interesting projects this year. For instance, a team of scientists and mathematicians at the DOE’s Lawrence Berkeley National Laboratory used their powerful number crunchers together with sophisticated algorithms to create cleaner combustion technologies to reduce the footprint of vehicles and machines. In another addition to cleaner manufacturing futures, scientists turned a lowly crustacean’s habits into a potentially beneficially process. The “Gribble” creature landed on the biofuel industry’s radar for its unique ability to digest wood in salty conditions. Now, researchers in the US and the UK are putting the University of Tennessee’s Kraken supercomputer to work modeling an enzyme in the Gribble’s gut, which could unlock the key to developing better industrial enzymes in the future.

Another notable story related to industry came from Oak Ridge National Lab, where researchers noted the importance of big rig trucks—a backbone to industry supply chains and product delivery. Most trucks only get about 6 miles to the gallon and altogether they emit about 423 million pounds of CO2 into the atmosphere each year. South Carolina-based BMI Corp. partnered with researchers at Oak Ridge National Laboratory (ORNL) to develop the SmartTruck UnderTray System, “a set of integrated aerodynamic fairings that improve the aerodynamics of 18-wheeler (Class 8) long-haul trucks.” After installation, the typical big rig can expect to achieve a fuel savings of between 7 and 12 percent, amounting to $5,000 annual savings in fuel costs.

CONTINUE with more of 2013’s progress… >>>

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This