The Top Supercomputing Led Discoveries of 2013

By Nicole Hemsoth

January 2, 2014

2013 has been an incredible year for the entire ecosystem around supercomputing; from vendors pushing new technologies to boost performance, capacity, and programmability to researchers turning over new insights with fresh techniques. While exascale has taken more of a backseat than we might have predicted at the year’s end of 2010, there are plenty of signs that production HPC environments are blazing plenty of new trails.

As the calendar flips into 2014, we wanted to cast a backward glance at select discoveries and opportunities made possible by the fastest systems in the world and the people who run them—all pulled from our news archives of the past year along some important thematic lines.

We’ve pulled over 30 examples of how supercomputers are set to change the world in 2014 and beyond and while this list is anything but exhaustive, it does show how key segments in research and industry are evolving with HPC.

In a Galaxy Far, Far Away…

galaxyOne of the most famous “showcase” areas where HPC finds a mainstream shine is when news breaks of startling answers emerge to questions as big as “where do we come from” and “what is the universe made of.” As one might expect, 2013 was a banner year for discoveries that reached well beyond earth.

This year, Kraken at the National Institute for Computational Sciences (NICS) at the University of Tennessee Knoxville, addressed some large-scale, stubborn classical physics problems with revolutionary protoplanetary disk research while another massive system, the Opteron-powered “Hopper” Cray XE6 system that is part of the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Lab lit up the comos.

Back in October, a team of scientists from ETH Zurich and the University of Leeds solved a 300-year-old riddle about the nature of the Earth’s rotation. Using the Cray XE6 supercomputer “Monte Rosa” installed at CSCS, the researchers uncovered the reason for the gradual westward movement of the Earth’s magnetic field.

This past November, astrophysics researchers at UC San Diego advanced their understanding of star formation with the help of some major computational resources from San Diego Supercomputer Center (SDSC) at the UC San Diego and the National Institute for Computational Science (NICS) at Oak Ridge National Laboratory.

Researchers at the Universities of Leeds and Chicago harnessed supercomputing power to uncover an important mechanism behind the generation of astrophysical magnetic fields such as that of the sun. And researchers at the Institute for Computational Cosmology (ICC), are using HPC to model phenomena ranging from solar flares to the formation of galaxies. Others, including an NSF-supported team from the University of Iowa used 2013 and plenty of supercomputing might to measure space turbulence directly for the first time in the laboratory, allowing the world to finally see the dynamics behind it.

Some spent some of their year bolstering current resources to aid in new discoveries. For instance, a new 60 teraflops supercomputer and 1 petabyte high speed storage system recently installed on the campus of the University of California at Santa Cruz, which will give astrophysicists at the college the computational and storage headroom they need to model the heavens like never before.

Medical Discovery and Research

CONNECTOME3Ever-growing datasets fed by information from a widening pool of sources pushed medical research even further into supercomputing territory this year. The modeling and simulation requirements of viruses, genomic data, organ and

Supercomputing’s reach into the human brain was one of the most widely-cited research items in medical circles in 2013. This year the Human Brain Project was carried forward by a host of supporting institutions and systems and the topic was the subject of several lectures and keynotes that are worthy of reviewing before a fresh year begins.

Cancer research is another important field that is increasingly reliant on powerful systems. For instance, this year, researchers at Emory University reported a significant improvement in their ability to analyze and understand changes of cancer tumors over time thanks to HPC work done on a Keeneland Project supercomputer. Analysis of high resolution cancer tumor images that used to take weeks can now be completed in a matter of minutes on the hybrid GPU-CPU system.

Complex viruses, including HIV/AIDS were also the subject of a great deal of supercomputer-powered research this year. Researchers at the University of Illinois Urbana-Champaign have successfully modeled the interior of the HIV-1 virus using the Blue Waters system, opening the door to new antiretroviral drugs that target HIV-1, the virus that causes AIDS.

Other viruses, including malaria, were the target of additional innovative research. Pittsburgh Supercomputing Center (PSC) and the University of Notre Dame received up to $1.6 million in funding from the Bill & Melinda Gates Foundation to develop a system of computers and software for the Vector Ecology and Control Network (VECNet), an international consortium to eradicate malaria. The new VECNet Cyber-Infrastructure Project (CI) will support VECNet’s effort to unite research, industrial and public policy efforts to attack one of the worst diseases in the developing world in more effective, economical ways.

Armed with vaccines, however, viruses can be stopped in their tracks, assuming the delivery of such life-saving measures is done effectively. A supercomputer simulation of the West African nation of Niger showed that improving transportation as well could improve vaccine availability among children and mothers from roughly 50 percent to more than 90 percent.

On another front, researchers came a step closer to understanding strokes this year. A team from UC Berkeley and the University of California San Diego (UCSD) used the supercomputing resources of the National Energy Research Scientific Computing Center (NERSC) to model the efficacy of microbubbles and high intensity focused ultrasound (HIFU) for breaking up stroke-causing clots.

Other noteworthy advances powered by world-class systems emerged this year in medical areas as diverse as autism research and pushing new boundaries in medical physics. As ever-more computing capacity comes online in the coming year, we expect the diverse medical field to produce stunning stories and discoveries in 2014.

Climate Change and Earth Science

earfThe volumes of scientific support are growing in support of climate change, a process which has been powered by massive simulations, including those that put the changes in the context of global shifts over vast lengths of time.

For example, HPCwire’s Tiffany Trader wrote back in September on the “Climate Time Machine”, which relies on a database of extreme global weather events from 1871 to the present day, culled from newspaper weather reports, measurements on land and sea for the first decades along with more modern data. The team of top climate scientists fed the data into powerful supercomputers, including those at NERSC and the Oak Ridge Leadership Computing Facility in Tennessee, to create a virtual climate time machine. A sizable portion (12 percent) of the supercomputing resources at NERSC is allocated to global climate change research. That’s nearly 150 million processor-hours of highly-tuned computational might focused on an issue that is critical to humanity’s future.

New systems emerged to tackle climate change data. For instance, Berkeley Lab’s Green Flash is a specialized supercomputer designed to showcase a way to perform more detailed climate modeling. The system uses customized Tensilica-based processors, similar to those found in iPhones, and communication-minimizing algorithms that cut down on the movement of data, to model the movement of clouds around the earth at a higher resolution than was previously possible, without consuming huge amounts of electricity.

This year large-scale systems, like Blue Waters at NCSA, were used by a research team including Penn State engineers to enhance scientists’ understanding of global precipitation. The team used Blue Waters to tackle the problem of large gaps in precipitation data for large parts of the world. The goal is to help scientists and researchers move toward an integrated global water cycle observatory.

Other advances using new and enhanced data sources, including GIS, advanced satellite and emerging sensor technologies were made to aid research into other aspects of climate change. From an NCAR-led project to predict air pollution to others, the global climate change picture is filling in rapidly.

Manufacturing and Heavy Industry

planetcityManufacturing has been a notable target of investments on both the vendor and research fronts in 2013 as political rhetoric, changes in traditional manufacturing jobs, the need for STEM-based education to support a new manufacturing future and new technologies have all stepped up.

At the heart of industrial progress is a constant march toward more automation, efficiency and data-driven progress. As one might imagine, this offers significant opportunities for HPC modeling and simulation—not to mention for supercomputer-fed innovations in materials science, manufacturing processes and other areas.

Several facilities, including the Ohio Supercomputer Center, have lent helping hands to bring HPC to industry in 2013–and fresh efforts are springing up, including at Lawrence Livermore National Laboratory (LLNL). For instance, this year select industrial users had a crack at Vulcan, a 5 petafopper with 390,000 cores. With this, and a new host of commercial applications to tweak, LLNL is providing a much-needed slew of software and scaling support. The lab spent 2013 lining up participants to step to the high-core line to see how more compute horsepower can push modeling and simulation limits while solving specific scalability issues.

In July, companies interested in testing the latest in low-cost carbon fiber had a new opportunity to partner with the Department of Energy’s Carbon Fiber Technology Facility. The CFTF, operated by Oak Ridge National Laboratory as part of the Department’s Clean Energy Manufacturing Initiative, opened earlier this year to find ways to reduce carbon fiber production costs and to work with the private sector to stimulate widespread use of the strong, lightweight material.

Research was made into reality in a few interesting projects this year. For instance, a team of scientists and mathematicians at the DOE’s Lawrence Berkeley National Laboratory used their powerful number crunchers together with sophisticated algorithms to create cleaner combustion technologies to reduce the footprint of vehicles and machines. In another addition to cleaner manufacturing futures, scientists turned a lowly crustacean’s habits into a potentially beneficially process. The “Gribble” creature landed on the biofuel industry’s radar for its unique ability to digest wood in salty conditions. Now, researchers in the US and the UK are putting the University of Tennessee’s Kraken supercomputer to work modeling an enzyme in the Gribble’s gut, which could unlock the key to developing better industrial enzymes in the future.

Another notable story related to industry came from Oak Ridge National Lab, where researchers noted the importance of big rig trucks—a backbone to industry supply chains and product delivery. Most trucks only get about 6 miles to the gallon and altogether they emit about 423 million pounds of CO2 into the atmosphere each year. South Carolina-based BMI Corp. partnered with researchers at Oak Ridge National Laboratory (ORNL) to develop the SmartTruck UnderTray System, “a set of integrated aerodynamic fairings that improve the aerodynamics of 18-wheeler (Class 8) long-haul trucks.” After installation, the typical big rig can expect to achieve a fuel savings of between 7 and 12 percent, amounting to $5,000 annual savings in fuel costs.

CONTINUE with more of 2013’s progress… >>>

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This