How RSC Pushed PetaStream To 1.2 Petaflops With Xeon Phi

By Timothy Prickett Morgan

April 3, 2014

Russian supercomputer maker RSC Group is pushing the compute density limits to the extreme again. The company has upgraded its PetaStream system, which debuted at the SC13 conference last year, with a new variant of the Xeon Phi X86 coprocessor from Intel.

With the upgrade, RSC is able to push the peak theoretical performance of a single rack of the PetaStream system by 20 percent, to 1.2 petaflops. The increase in floating point processing power is made possible by shifting to the top-end Xeon Phi 7120D coprocessor, which Intel quietly delivered in March. RSC says that it is the first of the supercomputer makers to get its hands on this device.

The Xeon Phi 5120D that RSC deployed in the original PetaStream machine was itself launched at the ISC13 supercomputing event last June, and it is a stripped down version of the Xeon Phi card that does not have its own fan or cooling heat sinks. Rather, it relies on the packaging and cooling of the system in which it is embedded to keep it from overheating. This allows companies like RSC to cram components a lot more tightly than is possible using the actively cooled packaging common with graphics cards, GPU coprocessors, and other Xeon Phi cards.  The Xeon Phi cards with a D designation are for the highest density, while the X models, which also are bare bones devices, are slightly larger physically; cards with the P designation have passive cooling (heat sinks and enclosures) and those with the A attached to their name have active cooling (heat sinks, enclosures, and a fan).

That Xeon Phi 5120D coprocessor had 60 Pentium-style cores running at 1.053 GHz plus 8 GB of GDDR5 memory with 352 GB/sec of peak memory bandwidth. This coprocessor dissipates 245 watts and delivered 1.011 teraflops of double-precision floating point operations per second. The PetaStream machine pairs eight Xeon Phi coprocessors with a single ten-core Xeon E5-2690 v2 processor running at 3 GHz to make a compute module, which has liquid cooling for all of the components inside of the enclosure and which is designed to pull 400 kilowatts of dissipated energy from those components. The PetaStream rack has 128 of these compute modules, for a total of 1,024 Xeon Phi coprocessors, and that works out to 61,440 cores and 245,760 threads packed into a rack that is 7.2 feet tall and measures 3.28 feet on a side.

With the upgrade to the 7120D, which just started shipping in the first quarter, the Xeon Phi embedded in the PetaStream system has all 61 cores on the die operational and they run at 1.238 GHz. That yields 1.208 teraflops of double precision math per card, and the machine also has 16 GB of GDDR memory so for applications that are memory constrained, this will be useful. (The memory bandwidth stays at 352 GB/sec however.) This device is also rated at 270 watts, so it burns more electricity and generates more heat.

That extra 20 percent of performance could come at a price, however, if list price from Intel is any guide. The Xeon Phi 5120D has a recommended end user price of $2,759, while the 7120D costs $4,235 each. That is an incremental 53.5 percent increase in the cost of the coprocessor for a 20 percent increase in raw floating point performance. This is not necessarily a premium that customers will want to pay. But then again, the cost of number crunching with Xeon Phi coprocessors can be so much lower than for Xeon CPUs (depending on the workload, of course) that there could be customers who will want this top-shelf performance. The point is, RSC is giving them options and, more importantly, the gap between the prices of the two Xeon Phi cards may not be as large as the one-off list price shows.

Oleg Gorbachov, spokesperson for RSC, tells HPCwire by email that the company is still putting the PetaStream machine through the paces and is running benchmark tests on various workloads. These include the GROMACS molecular dynamics simulator maintained by the Royal Institute of Technology and Uppsala University in Sweden; the LAMMPS molecular dynamics simulator out of Sandia National Laboratories; and the MAGMA linear algebra libraries out of the University of Tennessee at Knoxville. RSC hopes to present results of these tests at the ISC14 conference in Leipzig, Germany in June.

As for customers, Gorbachov says that RSC is working with potential PetaStream customers right now and hopes to announce its first deal this year.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This