Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive

By Mark Stettler and Shesha Krishnapura, Intel

January 11, 2016

Editor’s Note: It’s taken as a given by many in HPC that Moore’s Law is fading. Intel, not surprisingly, disagrees – a point made clearly by SC15 keynoter Diane Bryant of Intel. In this commentary, senior Intel technologists examine a few of the challenges encountered in trying to ensure progress has remained in lockstep with Moore’s Law and they emphasize it is Intel’s reliance on steadily advancing HPC to overcome challenges that has kept Moore’s Law healthy. It’s a virtuous, symbiotic cycle, they argue, with one advancing the other with no particular end in sight. We’ll see. For more analysis, see Tiffany Trader’s article, TOP500 Reanalysis Shows ‘Nothing Wrong with Moore’s Law’ – John Russell

Gordon Moore’s 1965 article on the economics driving the increase of semiconductor functionality has turned out to be wildly prophetic in terms of the effect on transistor scaling. Nearly 40 years later, in 2004, Intel was building microprocessors on the 90 nanometer process with 150 million transistors in a single chip. Today, we’re putting as many as 1.35 billion transistors in a processor with features as small as 14 nm. That’s approaching 10x the number of transistors with 6x finer features in only eleven years of technology development. And that’s not even the highest density part Intel makes; that award, at the time of this writing, goes to the 18-core Intel Xeon processor E7-8890 v3 with 5.5 billion transistors built on the 22 nm process, all packaged into 52 mm x 45 mm. Even more impressive is the fact that this is only counting transistors—there are many other components that occupy that 52 mm x 45 mm die. Moore’s observation continues to stand the test of time after 50 years of technology advancement.

Seeing Moore’s Law through an Engineer’s Eyes

Many who quote Moore’s Law—often interpreted as ~2X more transistors every technology generation—may not fully appreciate what Gordon Moore’s observation means to those who actually design the transistors that live up to it. Outside technology development, the challenges that shrinking transistors present are not seen, yet, they are enormous. And it’s not just the reduction in size. To deliver on Moore’s Law, engineers drive increasing complexity in the transistor design itself, including changing the internal structures, materials, and even the overall device architecture. These changes are necessary to create devices that can continue to be high performing and power efficient at smaller and smaller dimensions.

Until about ten years ago, transistor engineering was conceptually simpler: scale down essentially every aspect of the previous generation transistor, whose design features could all be represented in a simple 2D diagram (see below). Numerical simulation of the transistor, an important part of process development, could be readily achieved by breaking down the device into small silicon blocks and applying classical semiconductor physics. The computation could be run on a desk side workstation, which would crunch through the equations in minutes to hours. But as feature sizes have scaled down, we have had to use novel architectures, such as 3D transistors, and new materials with nanoscale dimensions to continue delivering device performance. These add a third dimension to the transistor representation and require more complicated physics, greatly increasing the complexity of the simulation.

See the figures below comparing the complexity of 2D planar transistors ten years ago (left) to 3D architectures today (right).

Intel 2d gateIntel 3d architecture

Challenges of Dimension, Architecture, and Materials

Looking far into the future, we’re examining and simulating beyond just the next few generations of transistors. We’re looking at the technologies we need to continue to develop components at these dimensions with the performance and reliability that our customers have come to expect. At these smaller and smaller dimensions, physical effects we used to approximate or overlook can no longer be ignored. For example, the following figure shows a futuristic device, a transistor made out of a silicon “wire” surrounded by a metal gate, with the red and green spheres representing individual silicon and metal atoms. At this dimension, a single atom of an element other than silicon within the wire (represented by the yellow dot in the corner of the cross section) can impact transistor behavior. As visualized after numerical simulation, this single stray atom distorts the uniformity of the electronic current traveling through the cross-section, disrupting the desired electrical behavior. Years ago, because the cross section was large, we would have ignored this effect. For devices of the future, we can’t, because its impact can be significant.

This simulation of a nanowire transistor shown below demonstrates how a single stray atom can distort electronic behavior.

Intel nanowire transiustor

At these nanoscale dimensions, it becomes important to simulate every atom including each atom’s electronic orbitals. Classical physics is left far behind and we enter the realm of quantum physics—much more complex and computationally demanding to simulate.

These kinds of problems are not possible to run on workstations—at least in a timeframe that allows Intel to introduce innovative electronic products every year or two. For example, calculating current to voltage relationships (I-V characteristics) with at least 10 points on a curve is a central part of simulation and transistor analysis. The table below shows the amount of memory and the wall clock time to calculate a single I-V point for a range of devices using a single processor core.

Intel table.1.10.15

At the dimensions of these simulations, the wave nature of electrons becomes important and it is necessary to solve Schrodinger’s equation. These simulations were conducted using NEMO5, a code developed at Purdue University by Professor Gerhard Klimeck’s group.

It doesn’t take long for the problem to outgrow the compute capabilities at a typical engineer’s desk—even with today’s powerful workstations. For case 3, a typical 10-point curve would take nearly 15 years to complete. Wall times of these magnitudes are not realistic for maintaining the types of development schedules any company must follow to stay competitive—and in business.

Moore’s Law and HPC

So, how do we, as process designers, keep up with the changes that drive Moore’s Law? How do we deal with shrinking technologies, novel architectures, and new materials at the center of our simulations? We turn to some of the very computers for which Moore’s Law helps provide increasing performance—enormously large High Performance Computing (HPC) clusters. The figure below maps how computational demand has grown over the course of years of technology advancements and marks the major inflection points that have shaped that demand. Today’s problems are solved by very large systems, the kind of machines that make the Top500.org list of the fastest supercomputers in the world.

To illustrate what these HPC systems mean to design times, refer back to case 3 above: using 20,000 cores, calculating 10 I-V points for case 3 can be done in about a day.

Intel image

So, Moore’s Law drives an increasingly larger demand for HPC, which allows us to continue to design devices that live up to Moore’s Law, which supports the creation of more powerful HPC, so that we can carry on the expressions of Moore’s Law in smaller and more complex devices. If it weren’t for these supercomputers, living up to Moore’s Law would become impossible. It’s a symbiotic relationship expressed in silicon with a never ending cycle—at least into the foreseeable future.

Delivering HPC for Transistor Design

Technical supercomputing in electronic design and simulation is an absolute necessity for Intel to stay competitive and retain its leadership position for the products it offers. From 2004 until today, Intel’s computing capacity for chip design has increased 4,600 percent (46X), for the reasons stated above. To serve Intel’s chip design computing needs, we have approximately 130,000 servers powered by Intel Xeon processors adding up to a million cores.

When Intel’s process simulation team (aka TCAD) approached Intel’s IT department with the computational demand needed for future-generation device simulations, IT designed a solution comprised of 1,296 nodes with 2,592 Intel Xeon processors E5-2680 v3, totaling 31,104 cores and 324 TB of memory. The system, identified as SCD2P4 (named for its location, the Santa Clara D2-P4 Data Center), occupies 15 extra-tall, 60 rack units (60U) compared to industry standard 42U, and it consumes 0.6 MW of power.

There are several aspects that are unique to this supercomputer: 1) it was designed from Commodity hardware/COTS (Common Off-the Shelf) components instead of custom components, as is the case in most world-class supercomputers; 2) it utilizes blade servers rather than traditional rack servers or specialized servers, which offers 1.6X better density—15 racks vs 26 racks for the entire system; 3) components were selected based on real-world benchmarking, which showed a 31% performance difference between competing InfiniBand Architecture solutions; 4) we developed a unique multi-tier check-pointing architecture, which utilizes Intel SSDs in each server, improving the reliability of the check-pointing and restore process, and removing the need for a complicated parallel storage solution.

scd2p4In June of 2015 the SCD2P4 system ranked 81 on the Top500.org list with 833.92 TFLOPS. In November of this year it remains among the top 100 fastest machines in the world, according to the Top500.

Cool HPC Machines

This machine is a very large system, but not the only large cluster dedicated to transistor and circuit design. Intel has at least three other HPC systems with over 4,000 cores that have ranked among the Top500 in the last several years. The problems of design are growing ever larger because of the complexity of devices, shrinking processes, and additional capabilities added to the silicon—all driving the need for larger systems.

With large systems like SCD2P4, one of the chief problems data centers face is managing power and using that power efficiently because electricity is expensive. The cluster runs in Intel’s free-air-cooled, extremely energy efficient D2 data center in Santa Clara with a Power Usage Effectiveness (PUE) of 1.06. The average PUE for the industry is 1.80 PUE. That qualifies SCD2P4 as among the most power efficient supercomputers in operation in the world. We are able to run at such high efficiency largely because we use free-air cooling rather than total refrigeration, and we maintain temperatures in the data center between 60 and 91 degrees Fahrenheit. In 2014, out of the 8,760 hours of operation in the year, the data center required only 39 hours of refrigerated cooling while the outside temperature was over 91 degrees. All told, the Santa Clara data center saves Intel $1.9 million each year in electricity and 44 million gallons of water. Thus, not only does Intel lead in transistor design, the data centers supporting these design efforts are built and managed for optimal utilization and power efficiency.[1]

An Exciting Time for Process Design

With the capabilities of today’s HPC systems, device engineering is a lot more exciting than it was even ten years ago. We get to run incredibly interesting simulations—virtual experiments—at levels of detail we never dreamed of; we now explore new device architectures and novel materials and visualize electronic behavior and process physics with atomistic resolution.

While some naysayers in the industry have sounded the death knell for Moore’s Law—as they have since time immemorial—it is Intel’s business to continue it. It’s an unwritten law in engineering that every generation thinks their challenges are the most difficult. Although new technical challenges continue to emerge, as they have every generation since the first VLSI chips were created, the outlook for Moore’s Law remains the same as it did twenty years ago; the path for the next few generations is visible, and after that, it gets hazy until we move forward.

The HPC industry’s march to Exascale depends upon Moore’s Law. The new Intel Scalable Systems Framework (Intel SSF)—an advanced architectural approach for developing scalable, balanced and efficient HPC systems—was designed with this in mind. Plus, Intel SSF will take advantage of innovations like the Intel Omni-Path Architecture fabric and the 3D XPoint to power the supercomputers that will enable process designers to address the challenges involved with keeping Moore’s Law advancing.

Innovation, by definition, is beset with barriers. Intel’s job is to overcome these barriers by exploration and discovery. In the case of transistor design, this means the creation of new materials, device architectures, manufacturing processes, etc. To bring these advances to the consumer takes a lot of simulation before we even begin chip fabrication (see below). Without supercomputers, we wouldn’t be able to understand what it takes to continue the march of Moore’s Law, and without this understanding, we wouldn’t be able to create more powerful supercomputers. This symbiosis is at the heart of the relationship between Moore’s Law and HPC.

Intel simulationAs shown here, using numerical simulation and HPC, process designers can visualize novel materials and process techniques and their effects on device behavior before running actual experiments. Shown above are simulations of chemical reactions that occur during the fabrication process. The individual particles are atoms.

 

 

 

Mark Stettler
Mark Stettler
Shesha Krishnapura
Shesha Krishnapura

Authors:
By Mark Stettler, Vice President, Technology and Manufacturing Group, Director of Process Technology Modeling, Intel Corporation and Shesha Krishnapura, Intel IT Chief Technology Officer and Senior Principal Engineer. [1] For more information on SCD2, read Intel Data Center Design Reaches New Heights of Efficiency (http://datacenterfrontier.com/intel-data-center-new-heights-efficiency/) and Intel CIO Building Efficient Data Center to Rival Google, Facebook Efforts (http://blogs.wsj.com/cio/2015/11/09/intel-cio-building-efficient-data-center-to-rival-google-facebook-efforts/).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This