Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive

By Mark Stettler and Shesha Krishnapura, Intel

January 11, 2016

Editor’s Note: It’s taken as a given by many in HPC that Moore’s Law is fading. Intel, not surprisingly, disagrees – a point made clearly by SC15 keynoter Diane Bryant of Intel. In this commentary, senior Intel technologists examine a few of the challenges encountered in trying to ensure progress has remained in lockstep with Moore’s Law and they emphasize it is Intel’s reliance on steadily advancing HPC to overcome challenges that has kept Moore’s Law healthy. It’s a virtuous, symbiotic cycle, they argue, with one advancing the other with no particular end in sight. We’ll see. For more analysis, see Tiffany Trader’s article, TOP500 Reanalysis Shows ‘Nothing Wrong with Moore’s Law’ – John Russell

Gordon Moore’s 1965 article on the economics driving the increase of semiconductor functionality has turned out to be wildly prophetic in terms of the effect on transistor scaling. Nearly 40 years later, in 2004, Intel was building microprocessors on the 90 nanometer process with 150 million transistors in a single chip. Today, we’re putting as many as 1.35 billion transistors in a processor with features as small as 14 nm. That’s approaching 10x the number of transistors with 6x finer features in only eleven years of technology development. And that’s not even the highest density part Intel makes; that award, at the time of this writing, goes to the 18-core Intel Xeon processor E7-8890 v3 with 5.5 billion transistors built on the 22 nm process, all packaged into 52 mm x 45 mm. Even more impressive is the fact that this is only counting transistors—there are many other components that occupy that 52 mm x 45 mm die. Moore’s observation continues to stand the test of time after 50 years of technology advancement.

Seeing Moore’s Law through an Engineer’s Eyes

Many who quote Moore’s Law—often interpreted as ~2X more transistors every technology generation—may not fully appreciate what Gordon Moore’s observation means to those who actually design the transistors that live up to it. Outside technology development, the challenges that shrinking transistors present are not seen, yet, they are enormous. And it’s not just the reduction in size. To deliver on Moore’s Law, engineers drive increasing complexity in the transistor design itself, including changing the internal structures, materials, and even the overall device architecture. These changes are necessary to create devices that can continue to be high performing and power efficient at smaller and smaller dimensions.

Until about ten years ago, transistor engineering was conceptually simpler: scale down essentially every aspect of the previous generation transistor, whose design features could all be represented in a simple 2D diagram (see below). Numerical simulation of the transistor, an important part of process development, could be readily achieved by breaking down the device into small silicon blocks and applying classical semiconductor physics. The computation could be run on a desk side workstation, which would crunch through the equations in minutes to hours. But as feature sizes have scaled down, we have had to use novel architectures, such as 3D transistors, and new materials with nanoscale dimensions to continue delivering device performance. These add a third dimension to the transistor representation and require more complicated physics, greatly increasing the complexity of the simulation.

See the figures below comparing the complexity of 2D planar transistors ten years ago (left) to 3D architectures today (right).

Intel 2d gateIntel 3d architecture

Challenges of Dimension, Architecture, and Materials

Looking far into the future, we’re examining and simulating beyond just the next few generations of transistors. We’re looking at the technologies we need to continue to develop components at these dimensions with the performance and reliability that our customers have come to expect. At these smaller and smaller dimensions, physical effects we used to approximate or overlook can no longer be ignored. For example, the following figure shows a futuristic device, a transistor made out of a silicon “wire” surrounded by a metal gate, with the red and green spheres representing individual silicon and metal atoms. At this dimension, a single atom of an element other than silicon within the wire (represented by the yellow dot in the corner of the cross section) can impact transistor behavior. As visualized after numerical simulation, this single stray atom distorts the uniformity of the electronic current traveling through the cross-section, disrupting the desired electrical behavior. Years ago, because the cross section was large, we would have ignored this effect. For devices of the future, we can’t, because its impact can be significant.

This simulation of a nanowire transistor shown below demonstrates how a single stray atom can distort electronic behavior.

Intel nanowire transiustor

At these nanoscale dimensions, it becomes important to simulate every atom including each atom’s electronic orbitals. Classical physics is left far behind and we enter the realm of quantum physics—much more complex and computationally demanding to simulate.

These kinds of problems are not possible to run on workstations—at least in a timeframe that allows Intel to introduce innovative electronic products every year or two. For example, calculating current to voltage relationships (I-V characteristics) with at least 10 points on a curve is a central part of simulation and transistor analysis. The table below shows the amount of memory and the wall clock time to calculate a single I-V point for a range of devices using a single processor core.

Intel table.1.10.15

At the dimensions of these simulations, the wave nature of electrons becomes important and it is necessary to solve Schrodinger’s equation. These simulations were conducted using NEMO5, a code developed at Purdue University by Professor Gerhard Klimeck’s group.

It doesn’t take long for the problem to outgrow the compute capabilities at a typical engineer’s desk—even with today’s powerful workstations. For case 3, a typical 10-point curve would take nearly 15 years to complete. Wall times of these magnitudes are not realistic for maintaining the types of development schedules any company must follow to stay competitive—and in business.

Moore’s Law and HPC

So, how do we, as process designers, keep up with the changes that drive Moore’s Law? How do we deal with shrinking technologies, novel architectures, and new materials at the center of our simulations? We turn to some of the very computers for which Moore’s Law helps provide increasing performance—enormously large High Performance Computing (HPC) clusters. The figure below maps how computational demand has grown over the course of years of technology advancements and marks the major inflection points that have shaped that demand. Today’s problems are solved by very large systems, the kind of machines that make the Top500.org list of the fastest supercomputers in the world.

To illustrate what these HPC systems mean to design times, refer back to case 3 above: using 20,000 cores, calculating 10 I-V points for case 3 can be done in about a day.

Intel image

So, Moore’s Law drives an increasingly larger demand for HPC, which allows us to continue to design devices that live up to Moore’s Law, which supports the creation of more powerful HPC, so that we can carry on the expressions of Moore’s Law in smaller and more complex devices. If it weren’t for these supercomputers, living up to Moore’s Law would become impossible. It’s a symbiotic relationship expressed in silicon with a never ending cycle—at least into the foreseeable future.

Delivering HPC for Transistor Design

Technical supercomputing in electronic design and simulation is an absolute necessity for Intel to stay competitive and retain its leadership position for the products it offers. From 2004 until today, Intel’s computing capacity for chip design has increased 4,600 percent (46X), for the reasons stated above. To serve Intel’s chip design computing needs, we have approximately 130,000 servers powered by Intel Xeon processors adding up to a million cores.

When Intel’s process simulation team (aka TCAD) approached Intel’s IT department with the computational demand needed for future-generation device simulations, IT designed a solution comprised of 1,296 nodes with 2,592 Intel Xeon processors E5-2680 v3, totaling 31,104 cores and 324 TB of memory. The system, identified as SCD2P4 (named for its location, the Santa Clara D2-P4 Data Center), occupies 15 extra-tall, 60 rack units (60U) compared to industry standard 42U, and it consumes 0.6 MW of power.

There are several aspects that are unique to this supercomputer: 1) it was designed from Commodity hardware/COTS (Common Off-the Shelf) components instead of custom components, as is the case in most world-class supercomputers; 2) it utilizes blade servers rather than traditional rack servers or specialized servers, which offers 1.6X better density—15 racks vs 26 racks for the entire system; 3) components were selected based on real-world benchmarking, which showed a 31% performance difference between competing InfiniBand Architecture solutions; 4) we developed a unique multi-tier check-pointing architecture, which utilizes Intel SSDs in each server, improving the reliability of the check-pointing and restore process, and removing the need for a complicated parallel storage solution.

scd2p4In June of 2015 the SCD2P4 system ranked 81 on the Top500.org list with 833.92 TFLOPS. In November of this year it remains among the top 100 fastest machines in the world, according to the Top500.

Cool HPC Machines

This machine is a very large system, but not the only large cluster dedicated to transistor and circuit design. Intel has at least three other HPC systems with over 4,000 cores that have ranked among the Top500 in the last several years. The problems of design are growing ever larger because of the complexity of devices, shrinking processes, and additional capabilities added to the silicon—all driving the need for larger systems.

With large systems like SCD2P4, one of the chief problems data centers face is managing power and using that power efficiently because electricity is expensive. The cluster runs in Intel’s free-air-cooled, extremely energy efficient D2 data center in Santa Clara with a Power Usage Effectiveness (PUE) of 1.06. The average PUE for the industry is 1.80 PUE. That qualifies SCD2P4 as among the most power efficient supercomputers in operation in the world. We are able to run at such high efficiency largely because we use free-air cooling rather than total refrigeration, and we maintain temperatures in the data center between 60 and 91 degrees Fahrenheit. In 2014, out of the 8,760 hours of operation in the year, the data center required only 39 hours of refrigerated cooling while the outside temperature was over 91 degrees. All told, the Santa Clara data center saves Intel $1.9 million each year in electricity and 44 million gallons of water. Thus, not only does Intel lead in transistor design, the data centers supporting these design efforts are built and managed for optimal utilization and power efficiency.[1]

An Exciting Time for Process Design

With the capabilities of today’s HPC systems, device engineering is a lot more exciting than it was even ten years ago. We get to run incredibly interesting simulations—virtual experiments—at levels of detail we never dreamed of; we now explore new device architectures and novel materials and visualize electronic behavior and process physics with atomistic resolution.

While some naysayers in the industry have sounded the death knell for Moore’s Law—as they have since time immemorial—it is Intel’s business to continue it. It’s an unwritten law in engineering that every generation thinks their challenges are the most difficult. Although new technical challenges continue to emerge, as they have every generation since the first VLSI chips were created, the outlook for Moore’s Law remains the same as it did twenty years ago; the path for the next few generations is visible, and after that, it gets hazy until we move forward.

The HPC industry’s march to Exascale depends upon Moore’s Law. The new Intel Scalable Systems Framework (Intel SSF)—an advanced architectural approach for developing scalable, balanced and efficient HPC systems—was designed with this in mind. Plus, Intel SSF will take advantage of innovations like the Intel Omni-Path Architecture fabric and the 3D XPoint to power the supercomputers that will enable process designers to address the challenges involved with keeping Moore’s Law advancing.

Innovation, by definition, is beset with barriers. Intel’s job is to overcome these barriers by exploration and discovery. In the case of transistor design, this means the creation of new materials, device architectures, manufacturing processes, etc. To bring these advances to the consumer takes a lot of simulation before we even begin chip fabrication (see below). Without supercomputers, we wouldn’t be able to understand what it takes to continue the march of Moore’s Law, and without this understanding, we wouldn’t be able to create more powerful supercomputers. This symbiosis is at the heart of the relationship between Moore’s Law and HPC.

Intel simulationAs shown here, using numerical simulation and HPC, process designers can visualize novel materials and process techniques and their effects on device behavior before running actual experiments. Shown above are simulations of chemical reactions that occur during the fabrication process. The individual particles are atoms.

 

 

 

Mark Stettler
Mark Stettler
Shesha Krishnapura
Shesha Krishnapura

Authors:
By Mark Stettler, Vice President, Technology and Manufacturing Group, Director of Process Technology Modeling, Intel Corporation and Shesha Krishnapura, Intel IT Chief Technology Officer and Senior Principal Engineer. [1] For more information on SCD2, read Intel Data Center Design Reaches New Heights of Efficiency (http://datacenterfrontier.com/intel-data-center-new-heights-efficiency/) and Intel CIO Building Efficient Data Center to Rival Google, Facebook Efforts (http://blogs.wsj.com/cio/2015/11/09/intel-cio-building-efficient-data-center-to-rival-google-facebook-efforts/).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This