Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive

By Mark Stettler and Shesha Krishnapura, Intel

January 11, 2016

Editor’s Note: It’s taken as a given by many in HPC that Moore’s Law is fading. Intel, not surprisingly, disagrees – a point made clearly by SC15 keynoter Diane Bryant of Intel. In this commentary, senior Intel technologists examine a few of the challenges encountered in trying to ensure progress has remained in lockstep with Moore’s Law and they emphasize it is Intel’s reliance on steadily advancing HPC to overcome challenges that has kept Moore’s Law healthy. It’s a virtuous, symbiotic cycle, they argue, with one advancing the other with no particular end in sight. We’ll see. For more analysis, see Tiffany Trader’s article, TOP500 Reanalysis Shows ‘Nothing Wrong with Moore’s Law’ – John Russell

Gordon Moore’s 1965 article on the economics driving the increase of semiconductor functionality has turned out to be wildly prophetic in terms of the effect on transistor scaling. Nearly 40 years later, in 2004, Intel was building microprocessors on the 90 nanometer process with 150 million transistors in a single chip. Today, we’re putting as many as 1.35 billion transistors in a processor with features as small as 14 nm. That’s approaching 10x the number of transistors with 6x finer features in only eleven years of technology development. And that’s not even the highest density part Intel makes; that award, at the time of this writing, goes to the 18-core Intel Xeon processor E7-8890 v3 with 5.5 billion transistors built on the 22 nm process, all packaged into 52 mm x 45 mm. Even more impressive is the fact that this is only counting transistors—there are many other components that occupy that 52 mm x 45 mm die. Moore’s observation continues to stand the test of time after 50 years of technology advancement.

Seeing Moore’s Law through an Engineer’s Eyes

Many who quote Moore’s Law—often interpreted as ~2X more transistors every technology generation—may not fully appreciate what Gordon Moore’s observation means to those who actually design the transistors that live up to it. Outside technology development, the challenges that shrinking transistors present are not seen, yet, they are enormous. And it’s not just the reduction in size. To deliver on Moore’s Law, engineers drive increasing complexity in the transistor design itself, including changing the internal structures, materials, and even the overall device architecture. These changes are necessary to create devices that can continue to be high performing and power efficient at smaller and smaller dimensions.

Until about ten years ago, transistor engineering was conceptually simpler: scale down essentially every aspect of the previous generation transistor, whose design features could all be represented in a simple 2D diagram (see below). Numerical simulation of the transistor, an important part of process development, could be readily achieved by breaking down the device into small silicon blocks and applying classical semiconductor physics. The computation could be run on a desk side workstation, which would crunch through the equations in minutes to hours. But as feature sizes have scaled down, we have had to use novel architectures, such as 3D transistors, and new materials with nanoscale dimensions to continue delivering device performance. These add a third dimension to the transistor representation and require more complicated physics, greatly increasing the complexity of the simulation.

See the figures below comparing the complexity of 2D planar transistors ten years ago (left) to 3D architectures today (right).

Intel 2d gateIntel 3d architecture

Challenges of Dimension, Architecture, and Materials

Looking far into the future, we’re examining and simulating beyond just the next few generations of transistors. We’re looking at the technologies we need to continue to develop components at these dimensions with the performance and reliability that our customers have come to expect. At these smaller and smaller dimensions, physical effects we used to approximate or overlook can no longer be ignored. For example, the following figure shows a futuristic device, a transistor made out of a silicon “wire” surrounded by a metal gate, with the red and green spheres representing individual silicon and metal atoms. At this dimension, a single atom of an element other than silicon within the wire (represented by the yellow dot in the corner of the cross section) can impact transistor behavior. As visualized after numerical simulation, this single stray atom distorts the uniformity of the electronic current traveling through the cross-section, disrupting the desired electrical behavior. Years ago, because the cross section was large, we would have ignored this effect. For devices of the future, we can’t, because its impact can be significant.

This simulation of a nanowire transistor shown below demonstrates how a single stray atom can distort electronic behavior.

Intel nanowire transiustor

At these nanoscale dimensions, it becomes important to simulate every atom including each atom’s electronic orbitals. Classical physics is left far behind and we enter the realm of quantum physics—much more complex and computationally demanding to simulate.

These kinds of problems are not possible to run on workstations—at least in a timeframe that allows Intel to introduce innovative electronic products every year or two. For example, calculating current to voltage relationships (I-V characteristics) with at least 10 points on a curve is a central part of simulation and transistor analysis. The table below shows the amount of memory and the wall clock time to calculate a single I-V point for a range of devices using a single processor core.

Intel table.1.10.15

At the dimensions of these simulations, the wave nature of electrons becomes important and it is necessary to solve Schrodinger’s equation. These simulations were conducted using NEMO5, a code developed at Purdue University by Professor Gerhard Klimeck’s group.

It doesn’t take long for the problem to outgrow the compute capabilities at a typical engineer’s desk—even with today’s powerful workstations. For case 3, a typical 10-point curve would take nearly 15 years to complete. Wall times of these magnitudes are not realistic for maintaining the types of development schedules any company must follow to stay competitive—and in business.

Moore’s Law and HPC

So, how do we, as process designers, keep up with the changes that drive Moore’s Law? How do we deal with shrinking technologies, novel architectures, and new materials at the center of our simulations? We turn to some of the very computers for which Moore’s Law helps provide increasing performance—enormously large High Performance Computing (HPC) clusters. The figure below maps how computational demand has grown over the course of years of technology advancements and marks the major inflection points that have shaped that demand. Today’s problems are solved by very large systems, the kind of machines that make the Top500.org list of the fastest supercomputers in the world.

To illustrate what these HPC systems mean to design times, refer back to case 3 above: using 20,000 cores, calculating 10 I-V points for case 3 can be done in about a day.

Intel image

So, Moore’s Law drives an increasingly larger demand for HPC, which allows us to continue to design devices that live up to Moore’s Law, which supports the creation of more powerful HPC, so that we can carry on the expressions of Moore’s Law in smaller and more complex devices. If it weren’t for these supercomputers, living up to Moore’s Law would become impossible. It’s a symbiotic relationship expressed in silicon with a never ending cycle—at least into the foreseeable future.

Delivering HPC for Transistor Design

Technical supercomputing in electronic design and simulation is an absolute necessity for Intel to stay competitive and retain its leadership position for the products it offers. From 2004 until today, Intel’s computing capacity for chip design has increased 4,600 percent (46X), for the reasons stated above. To serve Intel’s chip design computing needs, we have approximately 130,000 servers powered by Intel Xeon processors adding up to a million cores.

When Intel’s process simulation team (aka TCAD) approached Intel’s IT department with the computational demand needed for future-generation device simulations, IT designed a solution comprised of 1,296 nodes with 2,592 Intel Xeon processors E5-2680 v3, totaling 31,104 cores and 324 TB of memory. The system, identified as SCD2P4 (named for its location, the Santa Clara D2-P4 Data Center), occupies 15 extra-tall, 60 rack units (60U) compared to industry standard 42U, and it consumes 0.6 MW of power.

There are several aspects that are unique to this supercomputer: 1) it was designed from Commodity hardware/COTS (Common Off-the Shelf) components instead of custom components, as is the case in most world-class supercomputers; 2) it utilizes blade servers rather than traditional rack servers or specialized servers, which offers 1.6X better density—15 racks vs 26 racks for the entire system; 3) components were selected based on real-world benchmarking, which showed a 31% performance difference between competing InfiniBand Architecture solutions; 4) we developed a unique multi-tier check-pointing architecture, which utilizes Intel SSDs in each server, improving the reliability of the check-pointing and restore process, and removing the need for a complicated parallel storage solution.

scd2p4In June of 2015 the SCD2P4 system ranked 81 on the Top500.org list with 833.92 TFLOPS. In November of this year it remains among the top 100 fastest machines in the world, according to the Top500.

Cool HPC Machines

This machine is a very large system, but not the only large cluster dedicated to transistor and circuit design. Intel has at least three other HPC systems with over 4,000 cores that have ranked among the Top500 in the last several years. The problems of design are growing ever larger because of the complexity of devices, shrinking processes, and additional capabilities added to the silicon—all driving the need for larger systems.

With large systems like SCD2P4, one of the chief problems data centers face is managing power and using that power efficiently because electricity is expensive. The cluster runs in Intel’s free-air-cooled, extremely energy efficient D2 data center in Santa Clara with a Power Usage Effectiveness (PUE) of 1.06. The average PUE for the industry is 1.80 PUE. That qualifies SCD2P4 as among the most power efficient supercomputers in operation in the world. We are able to run at such high efficiency largely because we use free-air cooling rather than total refrigeration, and we maintain temperatures in the data center between 60 and 91 degrees Fahrenheit. In 2014, out of the 8,760 hours of operation in the year, the data center required only 39 hours of refrigerated cooling while the outside temperature was over 91 degrees. All told, the Santa Clara data center saves Intel $1.9 million each year in electricity and 44 million gallons of water. Thus, not only does Intel lead in transistor design, the data centers supporting these design efforts are built and managed for optimal utilization and power efficiency.[1]

An Exciting Time for Process Design

With the capabilities of today’s HPC systems, device engineering is a lot more exciting than it was even ten years ago. We get to run incredibly interesting simulations—virtual experiments—at levels of detail we never dreamed of; we now explore new device architectures and novel materials and visualize electronic behavior and process physics with atomistic resolution.

While some naysayers in the industry have sounded the death knell for Moore’s Law—as they have since time immemorial—it is Intel’s business to continue it. It’s an unwritten law in engineering that every generation thinks their challenges are the most difficult. Although new technical challenges continue to emerge, as they have every generation since the first VLSI chips were created, the outlook for Moore’s Law remains the same as it did twenty years ago; the path for the next few generations is visible, and after that, it gets hazy until we move forward.

The HPC industry’s march to Exascale depends upon Moore’s Law. The new Intel Scalable Systems Framework (Intel SSF)—an advanced architectural approach for developing scalable, balanced and efficient HPC systems—was designed with this in mind. Plus, Intel SSF will take advantage of innovations like the Intel Omni-Path Architecture fabric and the 3D XPoint to power the supercomputers that will enable process designers to address the challenges involved with keeping Moore’s Law advancing.

Innovation, by definition, is beset with barriers. Intel’s job is to overcome these barriers by exploration and discovery. In the case of transistor design, this means the creation of new materials, device architectures, manufacturing processes, etc. To bring these advances to the consumer takes a lot of simulation before we even begin chip fabrication (see below). Without supercomputers, we wouldn’t be able to understand what it takes to continue the march of Moore’s Law, and without this understanding, we wouldn’t be able to create more powerful supercomputers. This symbiosis is at the heart of the relationship between Moore’s Law and HPC.

Intel simulationAs shown here, using numerical simulation and HPC, process designers can visualize novel materials and process techniques and their effects on device behavior before running actual experiments. Shown above are simulations of chemical reactions that occur during the fabrication process. The individual particles are atoms.

 

 

 

Mark Stettler
Mark Stettler
Shesha Krishnapura
Shesha Krishnapura

Authors:
By Mark Stettler, Vice President, Technology and Manufacturing Group, Director of Process Technology Modeling, Intel Corporation and Shesha Krishnapura, Intel IT Chief Technology Officer and Senior Principal Engineer. [1] For more information on SCD2, read Intel Data Center Design Reaches New Heights of Efficiency (http://datacenterfrontier.com/intel-data-center-new-heights-efficiency/) and Intel CIO Building Efficient Data Center to Rival Google, Facebook Efforts (http://blogs.wsj.com/cio/2015/11/09/intel-cio-building-efficient-data-center-to-rival-google-facebook-efforts/).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This