Moore’s Law – Not Dead – and Intel’s Use of HPC to Keep it Alive

By Mark Stettler and Shesha Krishnapura, Intel

January 11, 2016

Editor’s Note: It’s taken as a given by many in HPC that Moore’s Law is fading. Intel, not surprisingly, disagrees – a point made clearly by SC15 keynoter Diane Bryant of Intel. In this commentary, senior Intel technologists examine a few of the challenges encountered in trying to ensure progress has remained in lockstep with Moore’s Law and they emphasize it is Intel’s reliance on steadily advancing HPC to overcome challenges that has kept Moore’s Law healthy. It’s a virtuous, symbiotic cycle, they argue, with one advancing the other with no particular end in sight. We’ll see. For more analysis, see Tiffany Trader’s article, TOP500 Reanalysis Shows ‘Nothing Wrong with Moore’s Law’ – John Russell

Gordon Moore’s 1965 article on the economics driving the increase of semiconductor functionality has turned out to be wildly prophetic in terms of the effect on transistor scaling. Nearly 40 years later, in 2004, Intel was building microprocessors on the 90 nanometer process with 150 million transistors in a single chip. Today, we’re putting as many as 1.35 billion transistors in a processor with features as small as 14 nm. That’s approaching 10x the number of transistors with 6x finer features in only eleven years of technology development. And that’s not even the highest density part Intel makes; that award, at the time of this writing, goes to the 18-core Intel Xeon processor E7-8890 v3 with 5.5 billion transistors built on the 22 nm process, all packaged into 52 mm x 45 mm. Even more impressive is the fact that this is only counting transistors—there are many other components that occupy that 52 mm x 45 mm die. Moore’s observation continues to stand the test of time after 50 years of technology advancement.

Seeing Moore’s Law through an Engineer’s Eyes

Many who quote Moore’s Law—often interpreted as ~2X more transistors every technology generation—may not fully appreciate what Gordon Moore’s observation means to those who actually design the transistors that live up to it. Outside technology development, the challenges that shrinking transistors present are not seen, yet, they are enormous. And it’s not just the reduction in size. To deliver on Moore’s Law, engineers drive increasing complexity in the transistor design itself, including changing the internal structures, materials, and even the overall device architecture. These changes are necessary to create devices that can continue to be high performing and power efficient at smaller and smaller dimensions.

Until about ten years ago, transistor engineering was conceptually simpler: scale down essentially every aspect of the previous generation transistor, whose design features could all be represented in a simple 2D diagram (see below). Numerical simulation of the transistor, an important part of process development, could be readily achieved by breaking down the device into small silicon blocks and applying classical semiconductor physics. The computation could be run on a desk side workstation, which would crunch through the equations in minutes to hours. But as feature sizes have scaled down, we have had to use novel architectures, such as 3D transistors, and new materials with nanoscale dimensions to continue delivering device performance. These add a third dimension to the transistor representation and require more complicated physics, greatly increasing the complexity of the simulation.

See the figures below comparing the complexity of 2D planar transistors ten years ago (left) to 3D architectures today (right).

Intel 2d gateIntel 3d architecture

Challenges of Dimension, Architecture, and Materials

Looking far into the future, we’re examining and simulating beyond just the next few generations of transistors. We’re looking at the technologies we need to continue to develop components at these dimensions with the performance and reliability that our customers have come to expect. At these smaller and smaller dimensions, physical effects we used to approximate or overlook can no longer be ignored. For example, the following figure shows a futuristic device, a transistor made out of a silicon “wire” surrounded by a metal gate, with the red and green spheres representing individual silicon and metal atoms. At this dimension, a single atom of an element other than silicon within the wire (represented by the yellow dot in the corner of the cross section) can impact transistor behavior. As visualized after numerical simulation, this single stray atom distorts the uniformity of the electronic current traveling through the cross-section, disrupting the desired electrical behavior. Years ago, because the cross section was large, we would have ignored this effect. For devices of the future, we can’t, because its impact can be significant.

This simulation of a nanowire transistor shown below demonstrates how a single stray atom can distort electronic behavior.

Intel nanowire transiustor

At these nanoscale dimensions, it becomes important to simulate every atom including each atom’s electronic orbitals. Classical physics is left far behind and we enter the realm of quantum physics—much more complex and computationally demanding to simulate.

These kinds of problems are not possible to run on workstations—at least in a timeframe that allows Intel to introduce innovative electronic products every year or two. For example, calculating current to voltage relationships (I-V characteristics) with at least 10 points on a curve is a central part of simulation and transistor analysis. The table below shows the amount of memory and the wall clock time to calculate a single I-V point for a range of devices using a single processor core.

Intel table.1.10.15

At the dimensions of these simulations, the wave nature of electrons becomes important and it is necessary to solve Schrodinger’s equation. These simulations were conducted using NEMO5, a code developed at Purdue University by Professor Gerhard Klimeck’s group.

It doesn’t take long for the problem to outgrow the compute capabilities at a typical engineer’s desk—even with today’s powerful workstations. For case 3, a typical 10-point curve would take nearly 15 years to complete. Wall times of these magnitudes are not realistic for maintaining the types of development schedules any company must follow to stay competitive—and in business.

Moore’s Law and HPC

So, how do we, as process designers, keep up with the changes that drive Moore’s Law? How do we deal with shrinking technologies, novel architectures, and new materials at the center of our simulations? We turn to some of the very computers for which Moore’s Law helps provide increasing performance—enormously large High Performance Computing (HPC) clusters. The figure below maps how computational demand has grown over the course of years of technology advancements and marks the major inflection points that have shaped that demand. Today’s problems are solved by very large systems, the kind of machines that make the Top500.org list of the fastest supercomputers in the world.

To illustrate what these HPC systems mean to design times, refer back to case 3 above: using 20,000 cores, calculating 10 I-V points for case 3 can be done in about a day.

Intel image

So, Moore’s Law drives an increasingly larger demand for HPC, which allows us to continue to design devices that live up to Moore’s Law, which supports the creation of more powerful HPC, so that we can carry on the expressions of Moore’s Law in smaller and more complex devices. If it weren’t for these supercomputers, living up to Moore’s Law would become impossible. It’s a symbiotic relationship expressed in silicon with a never ending cycle—at least into the foreseeable future.

Delivering HPC for Transistor Design

Technical supercomputing in electronic design and simulation is an absolute necessity for Intel to stay competitive and retain its leadership position for the products it offers. From 2004 until today, Intel’s computing capacity for chip design has increased 4,600 percent (46X), for the reasons stated above. To serve Intel’s chip design computing needs, we have approximately 130,000 servers powered by Intel Xeon processors adding up to a million cores.

When Intel’s process simulation team (aka TCAD) approached Intel’s IT department with the computational demand needed for future-generation device simulations, IT designed a solution comprised of 1,296 nodes with 2,592 Intel Xeon processors E5-2680 v3, totaling 31,104 cores and 324 TB of memory. The system, identified as SCD2P4 (named for its location, the Santa Clara D2-P4 Data Center), occupies 15 extra-tall, 60 rack units (60U) compared to industry standard 42U, and it consumes 0.6 MW of power.

There are several aspects that are unique to this supercomputer: 1) it was designed from Commodity hardware/COTS (Common Off-the Shelf) components instead of custom components, as is the case in most world-class supercomputers; 2) it utilizes blade servers rather than traditional rack servers or specialized servers, which offers 1.6X better density—15 racks vs 26 racks for the entire system; 3) components were selected based on real-world benchmarking, which showed a 31% performance difference between competing InfiniBand Architecture solutions; 4) we developed a unique multi-tier check-pointing architecture, which utilizes Intel SSDs in each server, improving the reliability of the check-pointing and restore process, and removing the need for a complicated parallel storage solution.

scd2p4In June of 2015 the SCD2P4 system ranked 81 on the Top500.org list with 833.92 TFLOPS. In November of this year it remains among the top 100 fastest machines in the world, according to the Top500.

Cool HPC Machines

This machine is a very large system, but not the only large cluster dedicated to transistor and circuit design. Intel has at least three other HPC systems with over 4,000 cores that have ranked among the Top500 in the last several years. The problems of design are growing ever larger because of the complexity of devices, shrinking processes, and additional capabilities added to the silicon—all driving the need for larger systems.

With large systems like SCD2P4, one of the chief problems data centers face is managing power and using that power efficiently because electricity is expensive. The cluster runs in Intel’s free-air-cooled, extremely energy efficient D2 data center in Santa Clara with a Power Usage Effectiveness (PUE) of 1.06. The average PUE for the industry is 1.80 PUE. That qualifies SCD2P4 as among the most power efficient supercomputers in operation in the world. We are able to run at such high efficiency largely because we use free-air cooling rather than total refrigeration, and we maintain temperatures in the data center between 60 and 91 degrees Fahrenheit. In 2014, out of the 8,760 hours of operation in the year, the data center required only 39 hours of refrigerated cooling while the outside temperature was over 91 degrees. All told, the Santa Clara data center saves Intel $1.9 million each year in electricity and 44 million gallons of water. Thus, not only does Intel lead in transistor design, the data centers supporting these design efforts are built and managed for optimal utilization and power efficiency.[1]

An Exciting Time for Process Design

With the capabilities of today’s HPC systems, device engineering is a lot more exciting than it was even ten years ago. We get to run incredibly interesting simulations—virtual experiments—at levels of detail we never dreamed of; we now explore new device architectures and novel materials and visualize electronic behavior and process physics with atomistic resolution.

While some naysayers in the industry have sounded the death knell for Moore’s Law—as they have since time immemorial—it is Intel’s business to continue it. It’s an unwritten law in engineering that every generation thinks their challenges are the most difficult. Although new technical challenges continue to emerge, as they have every generation since the first VLSI chips were created, the outlook for Moore’s Law remains the same as it did twenty years ago; the path for the next few generations is visible, and after that, it gets hazy until we move forward.

The HPC industry’s march to Exascale depends upon Moore’s Law. The new Intel Scalable Systems Framework (Intel SSF)—an advanced architectural approach for developing scalable, balanced and efficient HPC systems—was designed with this in mind. Plus, Intel SSF will take advantage of innovations like the Intel Omni-Path Architecture fabric and the 3D XPoint to power the supercomputers that will enable process designers to address the challenges involved with keeping Moore’s Law advancing.

Innovation, by definition, is beset with barriers. Intel’s job is to overcome these barriers by exploration and discovery. In the case of transistor design, this means the creation of new materials, device architectures, manufacturing processes, etc. To bring these advances to the consumer takes a lot of simulation before we even begin chip fabrication (see below). Without supercomputers, we wouldn’t be able to understand what it takes to continue the march of Moore’s Law, and without this understanding, we wouldn’t be able to create more powerful supercomputers. This symbiosis is at the heart of the relationship between Moore’s Law and HPC.

Intel simulationAs shown here, using numerical simulation and HPC, process designers can visualize novel materials and process techniques and their effects on device behavior before running actual experiments. Shown above are simulations of chemical reactions that occur during the fabrication process. The individual particles are atoms.

 

 

 

Mark Stettler
Mark Stettler
Shesha Krishnapura
Shesha Krishnapura

Authors:
By Mark Stettler, Vice President, Technology and Manufacturing Group, Director of Process Technology Modeling, Intel Corporation and Shesha Krishnapura, Intel IT Chief Technology Officer and Senior Principal Engineer. [1] For more information on SCD2, read Intel Data Center Design Reaches New Heights of Efficiency (http://datacenterfrontier.com/intel-data-center-new-heights-efficiency/) and Intel CIO Building Efficient Data Center to Rival Google, Facebook Efforts (http://blogs.wsj.com/cio/2015/11/09/intel-cio-building-efficient-data-center-to-rival-google-facebook-efforts/).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight. Hyperion Research analyst and noted storage expert Mark No Read more…

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Why HPC Storage Matters More Now Than Ever: Analyst Q&A

September 17, 2021

With soaring data volumes and insatiable computing driving nearly every facet of economic, social and scientific progress, data storage is seizing the spotlight Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire