What Knights Landing Is Not

By James Reinders, Intel

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion.

I have found that everything is clear, when we really understand that Knights Landing is an Intel processor. That makes it NOT Knights Corner. That makes it NOT a GPU. That makes it NOT a PCIe limited accelerator. That makes it NOT force large, new, and unique investments in software programming.

Perhaps everything is most clear when we discuss what it is and what it is not.

Knights Landing is NOT Knights Corner

Knights Corner, the first Intel Xeon Phi product, was a coprocessor. Knights Corner has been extraordinarily successful powering many of the world’s fastest computers. Nevertheless, Knights Corner required a hot processor, shuffling of data over the PCIe bus, and often the use of offload-style programming due to limited memory capacity and strong Amdahl’s Law effects when running less parallel code.

Knights Landing, as a processor, is a very easy upgrade for a Knights Corner user. Applications that used Knights Corner run even better on Knights Landing. Even bigger news is this: applications which were never able to adapt to the limitations of Knights Corner (or offloading to GPUs for that matter) will find Knights Landing an exciting option.


Knights Landing is NOT a GPU (neither was Knights Corner)

Knights Landing is a full-fledged, highly scalable, Intel processor. This processor can reach unprecedented levels of performance and parallelism, without giving up programmability. You can use the same parallel programming models, the same tools, and the same binaries that run today on other Intel processors.

Programming languages that work for processors, just work for Knights Landing too. Programming models, like OpenMP, MPI and TBB, just work for Knights Landing also.

Restrictive models tailored for GPUs, including kernel programming in CUDA and OpenCL, do not apply to processors (and I’m not talking just about Intel processors). We do not need them, because we have the full richness and portability of processor programming models fully available on Knights Landing.

Knights Landing is NOT going to invalidate prior processor coding efforts

It’s Knights Landing that really brings us home. It’s a full processor from Intel, one that happens to have up to 72 cores. It has an unprecedented ability to perform on highly parallel programs while being compatible with the tools and programming models common to Intel processors.

One of the first things I did when I initially logged on to a Knights Landing machine was to type in “yum install emacs.” I’m sure that whoever built that emacs binary had never heard of Knights Landing. It worked and I was happy to have the power of emacs so as to no be slowed by the primitive “vi.” I am so happy that software just runs, without a recompilation needed. No need to do something weird with Knights Landing to use it with your favorite software. It’s just like any other processor from Intel in that respect! It can run anything you would expect a processor to run: C, C++, Fortran, Python, and much more. It really is a full processor!

We think that parallel programming is challenging enough. That’s why we took a different approach compared to other device designs – especially GPUs. Our goal has been to deliver never before attainable processor performance while remaining compatible with existing software and tools. It’s quite an accomplishment.

Reinders-KNL-FullCover
Front jacket for “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition” by James Reinders, Jim Jeffers and Avinash Sodani

Knights Landing is NOT inflexible

When we are considering the design for a new computer, we ask a variety of basic questions, consider options, make choices, and bake a set of choices into a design. In the past, when the topic of using high bandwidth memory came up, there as always a debate: should we make it a cache or should we make it a scratchpad memory? And that, of course, depends to a certain extent on whether your application is cache-friendly – and most are – or if it’s one of those apps that is not cache-friendly and you think you can do better with scratch pad memory. Previously, we generally had to design the computer choosing one approach or the other and then live with the decision. With Knights Landing, we offer choices which make Knights Landing amazingly versatile.

Knights Landing integrates high bandwidth memory known as MCDRAM which greatly enhances performance.

Unprecedented configurability allows it to be operated in different “memory modes.” MCDRAM can either be treated as a high bandwidth memory-side cache, or it can be identified as high bandwidth memory, or a little of each. Knights Landing also supports different “cluster modes,” allowing it to behave as a cluster with one, two or four NUMA domains.

Reinders-KNL-Chapter17
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

As Jim Jeffers and I say in our book on Knights Landing, “Knights Landing offers an unprecedented variety of configurations which have traditionally been available only as hardwired and unchangeable design decisions. Specifically, the choices realized by the cluster modes and the memory modes. This wide ranging support allows Knights Landing to act like very different machines based on the configuration used to initialize the CPU, the operating system, and then the applications.” This means that Knights Landing can be adapted to fit application needs.

Knights Landing is NOT limited by small memory and offloading

Knights Landing processors support up to 384 GB DDR using 6 channels (~90GBs sustained bandwidth) memory and do not require applying offload constructs to hot spots because an entire application will run on the processor itself.

Reinders-KNL-Chapter22
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

Consider the weather forecasting program called WRF (Weather Research and Forecasting). It does not have just a few hot spots where it does all its computations – instead it has a huge number of algorithms used to solve different problems. There are many parts of the application that you would like to run very fast, especially the particularly complex algorithms. Since it all runs on Knights Landing, we’ve seen very nice results, which I have documented in chapter 22 of the new Knights Landing book, coupled with the ease of using the same code as we would on any processor. Programs like this are essentially an insurmountable challenge for a GPU or coprocessor.

Machine learning and data analytics will receive a boost from the introduction of Knights Landing2 . Both tend to apply computational models to large datasets – the constraints have always been the amount of data you can handle given the computational power available to you. Knights Landing is a highly scalable, highly parallel device that is well suited to handle large, complex computations. Because it is a processor rather than a coprocessor, the Intel Xeon Phi technology provides you with more access to your data. Best of all you are working with an on-package, very large processor-sized memory without the limits of any offload device (coprocessor or GPUs).

Reinders-KNL-Chapter24
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

The same holds true for visualization applications – Knights Landing provides a new level of flexibility for these kinds of highly specialized, data intensive workloads. Many people are surprised that Knights Landing can consistently beat the leading GPUs in visualization benchmarks 1 . But this is really not surprising when you consider that a GPU has a hard coded graphics pipeline, which is quite inflexible. Knights Landing, being a processor, has none of those constraints. Plus, you don’t wind up shipping massive amounts of data across the PCIe bus; the data is stored in on-package memory and is available for immediate processing.

Moving Toward Exascale

I think we can safely predict a long and happy life for the evolving Intel Xeon Phi processor family, which includes Knights Landing and all its descendants. Odds are that these next generation processors will play a major role in meeting one of HPC’s most exciting grand challenges – the realization of exascale.

Los Alamos National Laboratory’s Trinity supercomputer and the Cori supercomputer from NERSC are pre-exascale systems that will be operational in 2016. Both are powered by Knights Landing and are proof that double-digit petascale performance and the development of exascale machines are attainable without the use of attached accelerators or coprocessors.

And that’s why we emphasize that Knights Landing is a processor – a full-featured, extraordinarily powerful, highly parallel CPU – not a coprocessor or accelerator. It’s a major milestone on the road to exascale and an exciting new era in the world of high performance computing.

1 Intel Xeon Phi Processor High Performance Programming Knights Landing Edition, chapter 17, Software-defined Visualization

2 Intel Xeon Phi Processor High Performance Programming Knights Landing Edition, chapter 24, Machine Learning

All figures are reproduced with permission from Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition by James Reinders, Jim Jeffers and Avinash Sodani, copyright 2016, published by Morgan Kaufmann, ISBN 978-0-12-809194-4. Figures are available for download at http://lotsofcores.com/KNLbook.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC21 was a true ‘hybrid’ conference, with a total of 380 o Read more…

New Algorithm Overcomes Hurdle in Fusion Energy Simulation

January 15, 2022

The exascale era has brought with it a bevy of fusion energy simulation projects, aiming to stabilize the notoriously delicate—and so far, unmastered—clean energy source that would transform the world virtually overn Read more…

Summit Powers Novel Protein Function Prediction Work

January 13, 2022

There are hundreds of millions of sequenced proteins and counting—but only 170,000 have had their structures solved by researchers, bottlenecking our understanding of proteins and their functions across organisms’ ge Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to efforts to improve the underlying ‘noisy’ hardware, there's be Read more…

AWS Solution Channel

shutterstock 377963800

New – Amazon EC2 Hpc6a Instance Optimized for High Performance Computing

High Performance Computing (HPC) allows scientists and engineers to solve complex, compute-intensive problems such as computational fluid dynamics (CFD), weather forecasting, and genomics. Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Multiverse Targets ‘Quantum Computing for the Masses’

January 19, 2022

The race to deliver quantum computing solutions that shield users from the underlying complexity of quantum computing is heating up quickly. One example is Multiverse Computing, a European company, which today launched the second financial services product in its Singularity product group. The new offering, Fair Price, “delivers a higher accuracy in fair price calculations for financial... Read more…

Students at SC21: Out in Front, Alongside and Behind the Scenes

January 19, 2022

The Supercomputing Conference (SC) is one of the biggest international conferences dedicated to high-performance computing, networking, storage and analysis. SC Read more…

Q-Ctrl – Tackling Quantum Hardware’s Noise Problems with Software

January 13, 2022

Implementing effective error mitigation and correction is a critical next step in advancing quantum computing. While a lot of attention has been given to effort Read more…

Nvidia Defends Arm Acquisition Deal: a ‘Once-in-a-Generation Opportunity’

January 13, 2022

GPU-maker Nvidia is continuing to try to keep its proposed acquisition of British chip IP vendor Arm Ltd. alive, despite continuing concerns from several governments around the world. In its latest action, Nvidia filed a 29-page response to the U.K. government to point out a list of potential benefits of the proposed $40 billion deal. Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

SC21 Panel on Programming Models – Tackling Data Movement, DSLs, More

January 6, 2022

How will programming future systems differ from current practice? This is an ever-present question in computing. Yet it has, perhaps, never been more pressing g Read more…

Edge to Exascale: A Trend to Watch in 2022

January 5, 2022

Edge computing is an approach in which the data is processed and analyzed at the point of origin – the place where the data is generated. This is done to make data more accessible to end-point devices, or users, and to reduce the response time for data requests. HPC-class computing and networking technologies are critical to many edge use cases, and the intersection of HPC and ‘edge’ promises to be a hot topic in 2022. Read more…

Citing ‘Shortfalls,’ NOAA Targets Hundred-Fold HPC Increase Over Next Decade

January 5, 2022

From upgrading the Global Forecast System (GFS) to acquiring new supercomputers, the National Oceanic and Atmospheric Administration (NOAA) has been making big moves in the HPC sphere over the last few years—but now it’s setting the bar even higher. In a new report, NOAA’s Science Advisory Board (SAB) highlighted... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Nvidia Buys HPC Cluster Management Company Bright Computing

January 10, 2022

Graphics chip powerhouse Nvidia today announced that it has acquired HPC cluster management company Bright Computing for an undisclosed sum. Unlike Nvidia’s bid to purchase semiconductor IP company Arm, which has been stymied by regulatory challenges, the Bright deal is a straightforward acquisition that aims to expand... Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

Leading Solution Providers

Contributors

Lessons from LLVM: An SC21 Fireside Chat with Chris Lattner

December 27, 2021

Today, the LLVM compiler infrastructure world is essentially inescapable in HPC. But back in the 2000 timeframe, LLVM (low level virtual machine) was just getting its start as a new way of thinking about how to overcome shortcomings in the Java Virtual Machine. At the time, Chris Lattner was a graduate student of... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Three Universities Team for NSF-Funded ‘ACES’ Reconfigurable Supercomputer Prototype

September 23, 2021

As Moore’s law slows, HPC developers are increasingly looking for speed gains in specialized code and specialized hardware – but this specialization, in turn, can make testing and deploying code trickier than ever. Now, researchers from Texas A&M University, the University of Illinois at Urbana... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Top500: No Exascale, Fugaku Still Reigns, Polaris Debuts at #12

November 15, 2021

No exascale for you* -- at least, not within the High-Performance Linpack (HPL) territory of the latest Top500 list, issued today from the 33rd annual Supercomputing Conference (SC21), held in-person in St. Louis, Mo., and virtually, from Nov. 14–19. "We were hoping to have the first exascale system on this list but that didn’t happen," said Top500 co-author... Read more…

TACC Unveils Lonestar6 Supercomputer

November 1, 2021

The Texas Advanced Computing Center (TACC) is unveiling its latest supercomputer: Lonestar6, a three peak petaflops Dell system aimed at supporting researchers Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire