What Knights Landing Is Not

By James Reinders, Intel

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion.

I have found that everything is clear, when we really understand that Knights Landing is an Intel processor. That makes it NOT Knights Corner. That makes it NOT a GPU. That makes it NOT a PCIe limited accelerator. That makes it NOT force large, new, and unique investments in software programming.

Perhaps everything is most clear when we discuss what it is and what it is not.

Knights Landing is NOT Knights Corner

Knights Corner, the first Intel Xeon Phi product, was a coprocessor. Knights Corner has been extraordinarily successful powering many of the world’s fastest computers. Nevertheless, Knights Corner required a hot processor, shuffling of data over the PCIe bus, and often the use of offload-style programming due to limited memory capacity and strong Amdahl’s Law effects when running less parallel code.

Knights Landing, as a processor, is a very easy upgrade for a Knights Corner user. Applications that used Knights Corner run even better on Knights Landing. Even bigger news is this: applications which were never able to adapt to the limitations of Knights Corner (or offloading to GPUs for that matter) will find Knights Landing an exciting option.


Knights Landing is NOT a GPU (neither was Knights Corner)

Knights Landing is a full-fledged, highly scalable, Intel processor. This processor can reach unprecedented levels of performance and parallelism, without giving up programmability. You can use the same parallel programming models, the same tools, and the same binaries that run today on other Intel processors.

Programming languages that work for processors, just work for Knights Landing too. Programming models, like OpenMP, MPI and TBB, just work for Knights Landing also.

Restrictive models tailored for GPUs, including kernel programming in CUDA and OpenCL, do not apply to processors (and I’m not talking just about Intel processors). We do not need them, because we have the full richness and portability of processor programming models fully available on Knights Landing.

Knights Landing is NOT going to invalidate prior processor coding efforts

It’s Knights Landing that really brings us home. It’s a full processor from Intel, one that happens to have up to 72 cores. It has an unprecedented ability to perform on highly parallel programs while being compatible with the tools and programming models common to Intel processors.

One of the first things I did when I initially logged on to a Knights Landing machine was to type in “yum install emacs.” I’m sure that whoever built that emacs binary had never heard of Knights Landing. It worked and I was happy to have the power of emacs so as to no be slowed by the primitive “vi.” I am so happy that software just runs, without a recompilation needed. No need to do something weird with Knights Landing to use it with your favorite software. It’s just like any other processor from Intel in that respect! It can run anything you would expect a processor to run: C, C++, Fortran, Python, and much more. It really is a full processor!

We think that parallel programming is challenging enough. That’s why we took a different approach compared to other device designs – especially GPUs. Our goal has been to deliver never before attainable processor performance while remaining compatible with existing software and tools. It’s quite an accomplishment.

Reinders-KNL-FullCover
Front jacket for “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition” by James Reinders, Jim Jeffers and Avinash Sodani

Knights Landing is NOT inflexible

When we are considering the design for a new computer, we ask a variety of basic questions, consider options, make choices, and bake a set of choices into a design. In the past, when the topic of using high bandwidth memory came up, there as always a debate: should we make it a cache or should we make it a scratchpad memory? And that, of course, depends to a certain extent on whether your application is cache-friendly – and most are – or if it’s one of those apps that is not cache-friendly and you think you can do better with scratch pad memory. Previously, we generally had to design the computer choosing one approach or the other and then live with the decision. With Knights Landing, we offer choices which make Knights Landing amazingly versatile.

Knights Landing integrates high bandwidth memory known as MCDRAM which greatly enhances performance.

Unprecedented configurability allows it to be operated in different “memory modes.” MCDRAM can either be treated as a high bandwidth memory-side cache, or it can be identified as high bandwidth memory, or a little of each. Knights Landing also supports different “cluster modes,” allowing it to behave as a cluster with one, two or four NUMA domains.

Reinders-KNL-Chapter17
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

As Jim Jeffers and I say in our book on Knights Landing, “Knights Landing offers an unprecedented variety of configurations which have traditionally been available only as hardwired and unchangeable design decisions. Specifically, the choices realized by the cluster modes and the memory modes. This wide ranging support allows Knights Landing to act like very different machines based on the configuration used to initialize the CPU, the operating system, and then the applications.” This means that Knights Landing can be adapted to fit application needs.

Knights Landing is NOT limited by small memory and offloading

Knights Landing processors support up to 384 GB DDR using 6 channels (~90GBs sustained bandwidth) memory and do not require applying offload constructs to hot spots because an entire application will run on the processor itself.

Reinders-KNL-Chapter22
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

Consider the weather forecasting program called WRF (Weather Research and Forecasting). It does not have just a few hot spots where it does all its computations – instead it has a huge number of algorithms used to solve different problems. There are many parts of the application that you would like to run very fast, especially the particularly complex algorithms. Since it all runs on Knights Landing, we’ve seen very nice results, which I have documented in chapter 22 of the new Knights Landing book, coupled with the ease of using the same code as we would on any processor. Programs like this are essentially an insurmountable challenge for a GPU or coprocessor.

Machine learning and data analytics will receive a boost from the introduction of Knights Landing2 . Both tend to apply computational models to large datasets – the constraints have always been the amount of data you can handle given the computational power available to you. Knights Landing is a highly scalable, highly parallel device that is well suited to handle large, complex computations. Because it is a processor rather than a coprocessor, the Intel Xeon Phi technology provides you with more access to your data. Best of all you are working with an on-package, very large processor-sized memory without the limits of any offload device (coprocessor or GPUs).

Reinders-KNL-Chapter24
Source: “Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition,” 2016; used with permission – click to enlarge

The same holds true for visualization applications – Knights Landing provides a new level of flexibility for these kinds of highly specialized, data intensive workloads. Many people are surprised that Knights Landing can consistently beat the leading GPUs in visualization benchmarks 1 . But this is really not surprising when you consider that a GPU has a hard coded graphics pipeline, which is quite inflexible. Knights Landing, being a processor, has none of those constraints. Plus, you don’t wind up shipping massive amounts of data across the PCIe bus; the data is stored in on-package memory and is available for immediate processing.

Moving Toward Exascale

I think we can safely predict a long and happy life for the evolving Intel Xeon Phi processor family, which includes Knights Landing and all its descendants. Odds are that these next generation processors will play a major role in meeting one of HPC’s most exciting grand challenges – the realization of exascale.

Los Alamos National Laboratory’s Trinity supercomputer and the Cori supercomputer from NERSC are pre-exascale systems that will be operational in 2016. Both are powered by Knights Landing and are proof that double-digit petascale performance and the development of exascale machines are attainable without the use of attached accelerators or coprocessors.

And that’s why we emphasize that Knights Landing is a processor – a full-featured, extraordinarily powerful, highly parallel CPU – not a coprocessor or accelerator. It’s a major milestone on the road to exascale and an exciting new era in the world of high performance computing.

1 Intel Xeon Phi Processor High Performance Programming Knights Landing Edition, chapter 17, Software-defined Visualization

2 Intel Xeon Phi Processor High Performance Programming Knights Landing Edition, chapter 24, Machine Learning

All figures are reproduced with permission from Intel Xeon Phi Processor High Performance Programming, Knights Landing Edition by James Reinders, Jim Jeffers and Avinash Sodani, copyright 2016, published by Morgan Kaufmann, ISBN 978-0-12-809194-4. Figures are available for download at http://lotsofcores.com/KNLbook.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This