Why 2016 Is the Most Important Year in HPC in Over Two Decades

By Vincent Natoli, Stone Ridge Technology

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Their do-it-yourself, McGyver-like efforts were motivated by a frustration with the pricing, availability and maturity of then existing massively parallel processors, e.g., nCube, Thinking Machines, Convex and Cray. They named their machine Beowulf. Thomas Sterling and Donald Becker may not have known it at the time but their ungainly machine would usher in an era of commodity parallel computing that persists today and 1994 would prove to be a pivotal year in the history of high-performance computing (HPC). I believe that 2016 will be another such pivotal year. This year sees the launch of both NVIDIA’s Pascal P100 GPU, the latest in its Tesla compute line, and Knights Landing, the next manycore chip in the Intel Phi family.

NVIDIA

With its modest introduction in 2007 of the Tesla compute family of GPUs and CUDA, a compiler that made it much easier to do general programming on its products, NVIDIA introduced the HPC community to general purpose GPU computing (GPGPU). Since that time adoption has been brisk with many HPC codes ported in part or whole to GPUs to achieve better performance. When compared on a chip-to-chip basis against CPUs, GPUs have significantly better capability on both speed of calculation (FLOPS) and speed of data movement (bandwidth) (GB/s). Figure 1 tells this story.

Natoli CPUvGPU peak-DP-600xNatoli CPUvGPU peak-mem-bw-600x

Over the last decade GPUs have made significant inroads in many HPC applications important to industry and in the past three years there has been a resurgence of interest in machine intelligence, deep learning and AI that has largely been enabled by the compact, high-performance of NVIDIA GPUs and massive training sets now available on the internet. The challenge for NVIDIA is to change the perception of GPUs from accelerators to full computing platforms. When the community sees GPUs as accelerators it chooses to use them to offload the most time consuming kernels. For complex applications this may only be 50 percent of the total runtime and consequently, limited by Amdahl’s law, they will achieve at most a factor of 2. To make broader advances in HPC with gains proportionate to improvements in hardware specifications users need to develop full complex applications for the platform. The resulting gains can be very impressive. I will use ECHELON, the high performance reservoir simulator that my company, Stone Ridge Technology (SRT), markets to the oil and gas community as an example.

ECHELON is unique in that it is a complex full featured engineering application that runs every computational kernel on GPU; and while reservoir simulation targets a very specific domain it is representative of any engineering application that requires the solution of coupled non-linear partial differential equations on a grid. In that sense it is similar to codes for computational fluid dynamics, structural mechanics, weather modeling and many others.  Our experience at SRT with multiple generations of GPU technology is that we are taking full advantage of additional hardware resources provided by NVIDIA. Performance is almost directly proportional to the additional bandwidth/flops available. ECHELON, like most scientific codes, is bandwidth bound; double the bandwidth and runtimes go down by about a factor of two. Why is this exciting? It means that those linear gains we experienced pre-2004, when clock speed scaled up every two years, are once again attainable. ECHELON is back on the Moore’s law curve and any code, similarly constructed, can be as well.

Intel

Intel has not stood still and the success of GPUs in HPC has not escaped its attention. The company has presented a consistent vision of a manycore line of chips that are x86 compatible stretching back to the mid-2000s with the Larrabee project. Larrabee was to be an x86 compatible discrete graphics chip, in other words a chip to compete head-to-head with NVIDIA and ATI (now AMD) in their core business. Product delays and disappointing performance led to the cancellation of Larrabee in May 2010 and its morphing into Knights Ferry, the first of Intel’s manycore HPC chip family, Phi. Perhaps recognizing the early success of NVIDIA in HPC or as part of a strategic vision for x86 capable manycore chips, instead of competing on discrete graphics, Intel was going to compete with NVIDIA for this newly discovered accelerator market.

As the HPC incumbent, Intel had and still has significant advantages, including a huge installed customer base, x86 software compatibility and control of the host system. The Phi line followed Knights Ferry with Knights Corner in 2012 and the latest in the Phi line, released this year at ISC is Knights Landing. The challenge for Intel is to put a product on Figure 1 competitive with GPUs. Knights Landing’s specs indicate peak memory bandwidth of 490 GB/s and 3.46 teraflops peak double-precision FLOPS on the top bin part. Its success will depend largely on how easy it is to achieve that peak performance. The notion that Xeon codes will magically run much faster on the Phi family of chips with little or no modification has proven incorrect. It is a complex chip with a complex cache hierarchy and it will take both time and effort to modify codes to exploit it fully.

While GPUs have gained a strong and dedicated following over the last decade as a next generation HPC platform, many companies, fearing the investment in software development, the scope of the task and limited experience with GPUs have chosen a conservative wait and see posture. As loyal Intel customers, they have waited almost a decade to get a viable manycore computing platform, one optimized for throughput processing of threads. All the while the performance gap between GPU-based codes and their CPU-based equivalents has grown with each processor generation. The Xeon Phi family from Larrabee through Knights Corner has thus far been disappointing. It stands in stark contrast to the near military precision, consistent performance and technical excellence that Intel has exhibited in its main Xeon line since the introduction of the Core 2 architecture in 2004. Knights Landing is Intel’s third try.  After almost a decade of waiting and promises, the expectations on Knights Landing are understandably high and a failure to match or exceed the performance of Pascal should trigger heated debate in the cubicles, datacenters and board rooms where HPC matters.

The Battle for HPC

Intel and NVIDIA are battling each other for the massive number crunching and data moving work that is the hallmark of HPC. It’s the kind of work that includes modeling and simulation tasks of everything from airflow over automobiles and aircraft, climate and weather modeling, seismic processing, reservoir simulation and much more. This year that battle is being played out by the matchup between Knights Landing and Pascal. An enormous amount is at stake and the HPC hardware market only scratches the surface. The real cost is in the millions of person-hours that will be invested writing and porting massive, complicated technical codes to one of these two platforms. It’s a huge investment for companies and developers and it will set the HPC course for the next decade. Will Intel’s Knights Landing begin to put the pressure on NVIDIA’s Pascal or will Pascal become Intel’s Knight’s Mare. This year will tell.

About the Author

Vincent Natoli headshot 300x300Dr. Vincent Natoli is the president and founder of Stone Ridge Technology. He is a computational physicist with 20 years experience in the field of high performance computing. Previous positions include Technical Director at High Performance Technologies (HPTi) and Senior Physicist at ExxonMobil Corporation, where Dr. Natoli worked for 10 years in both its Corporate Research Lab in Clinton, New Jersey and the Upstream Research Center in Houston, Texas. Dr. Natoli holds Bachelor’s and Master’s degrees from MIT, a PhD in Physics from the University of Illinois Urbana-Champaign and a Masters in Technology Management from the Wharton School at the University of Pennsylvania. Dr. Natoli has worked on a wide variety of applications including reservoir modeling and seismic data processing for the oil and gas industry, molecular dynamics, quantum chemistry, bioinformatics and financial engineering.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at current count) across the European Union and supplanting HPC Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for high-performance computing, a newly created position that is a Read more…

By Tiffany Trader

Swiss Supercomputer Enables Ultra-Precise Climate Simulations

September 17, 2020

As smoke from the record-breaking West Coast wildfires pours across the globe and tropical storms continue to form at unprecedented rates, the state of the global climate is once again looming in the public eye. Owing to Read more…

By Oliver Peckham

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk management, and high-frequency trading, as told by a group of l Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

Legacy HPC System Seeds Supercomputing Excellence at UT Dallas

September 16, 2020

What happens to supercomputers after their productive life at an academic research center ends? The question often arises when people hear that the average age of a top supercomputer at retirement is about five years. Rest assured — systems aren’t simply scrapped. Instead, they’re donated to organizations and institutions that can make... Read more…

By Aaron Dubrow

AWS Solution Channel

Next-generation aerospace modeling and simulation: benchmarking Amazon Web Services High Performance Computing services

The aerospace industry has been using Computational Fluid Dynamics (CFD) for decades to create and optimize designs digitally, from the largest passenger planes and fighter jets to gliders and drones. Read more…

Intel® HPC + AI Pavilion

Berlin Institute of Health: Putting HPC to Work for the World

Researchers from the Center for Digital Health at the Berlin Institute of Health (BIH) are using science to understand the pathophysiology of COVID-19, which can help to inform the development of targeted treatments. Read more…

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

European Commission Declares €8 Billion Investment in Supercomputing

September 18, 2020

Just under two years ago, the European Commission formalized the EuroHPC Joint Undertaking (JU): a concerted HPC effort (comprising 32 participating states at c Read more…

By Oliver Peckham

Google Hires Longtime Intel Exec Bill Magro to Lead HPC Strategy

September 18, 2020

In a sign of the times, another prominent HPCer has made a move to a hyperscaler. Longtime Intel executive Bill Magro joined Google as chief technologist for hi Read more…

By Tiffany Trader

Future of Fintech on Display at HPC + AI Wall Street

September 17, 2020

Those who tuned in for Tuesday's HPC + AI Wall Street event got a peak at the future of fintech and lively discussion of topics like blockchain, AI for risk man Read more…

By Alex Woodie,Tiffany Trader and Todd R. Weiss

IBM’s Quantum Race to One Million Qubits

September 15, 2020

IBM today outlined its ambitious quantum computing technology roadmap at its virtual Quantum Summit. The eye-popping million qubit number is still far out, agrees IBM, but perhaps not that far out. Just as eye-popping is IBM’s nearer-term plan for a 1,000-plus qubit system named Condor... Read more…

By John Russell

Nvidia Commits to Buy Arm for $40B

September 14, 2020

Nvidia is acquiring semiconductor design company Arm Ltd. for $40 billion from SoftBank in a blockbuster deal that catapults the GPU chipmaker to a dominant position in the datacenter while helping troubled SoftBank reverse its financial woes. The deal, which has been rumored for... Read more…

By Todd R. Weiss and George Leopold

AMD’s Massive COVID-19 HPC Fund Adds 18 Institutions, 5 Petaflops of Power

September 14, 2020

Almost exactly five months ago, AMD announced its COVID-19 HPC Fund, an ongoing flow of resources and equipment to research institutions studying COVID-19 that began with an initial donation of $15 million. In June, AMD announced major equipment donations to several major institutions. Now, AMD is making its third major COVID-19 HPC Fund... Read more…

By Oliver Peckham

HPC Strategist Dave Turek Joins DNA Storage (and Computing) Company Catalog

September 11, 2020

You've heard the saying "flash is the new disk and disk is the new tape," which traces its origins back to Jim Gray*. But what if DNA-based data storage could o Read more…

By Tiffany Trader

Google’s Quantum Chemistry Simulation Suggests Promising Path Forward

September 9, 2020

A much-anticipated prize in quantum computing is the ability to more accurately model chemical bonding behavior. Doing so should lead to better chemical synthes Read more…

By John Russell

Supercomputer-Powered Research Uncovers Signs of ‘Bradykinin Storm’ That May Explain COVID-19 Symptoms

July 28, 2020

Doctors and medical researchers have struggled to pinpoint – let alone explain – the deluge of symptoms induced by COVID-19 infections in patients, and what Read more…

By Oliver Peckham

Nvidia Said to Be Close on Arm Deal

August 3, 2020

GPU leader Nvidia Corp. is in talks to buy U.K. chip designer Arm from parent company Softbank, according to several reports over the weekend. If consummated Read more…

By George Leopold

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Intel’s 7nm Slip Raises Questions About Ponte Vecchio GPU, Aurora Supercomputer

July 30, 2020

During its second-quarter earnings call, Intel announced a one-year delay of its 7nm process technology, which it says it will create an approximate six-month shift for its CPU product timing relative to prior expectations. The primary issue is a defect mode in the 7nm process that resulted in yield degradation... Read more…

By Tiffany Trader

HPE Keeps Cray Brand Promise, Reveals HPE Cray Supercomputing Line

August 4, 2020

The HPC community, ever-affectionate toward Cray and its eponymous founder, can breathe a (virtual) sigh of relief. The Cray brand will live on, encompassing th Read more…

By Tiffany Trader

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

Leading Solution Providers

Contributors

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

Oracle Cloud Infrastructure Powers Fugaku’s Storage, Scores IO500 Win

August 28, 2020

In June, RIKEN shook the supercomputing world with its Arm-based, Fujitsu-built juggernaut: Fugaku. The system, which weighs in at 415.5 Linpack petaflops, topp Read more…

By Oliver Peckham

Google Cloud Debuts 16-GPU Ampere A100 Instances

July 7, 2020

On the heels of the Nvidia’s Ampere A100 GPU launch in May, Google Cloud is announcing alpha availability of the A100 “Accelerator Optimized” VM A2 instance family on Google Compute Engine. The instances are powered by the HGX A100 16-GPU platform, which combines two HGX A100 8-GPU baseboards using... Read more…

By Tiffany Trader

DOD Orders Two AI-Focused Supercomputers from Liqid

August 24, 2020

The U.S. Department of Defense is making a big investment in data analytics and AI computing with the procurement of two HPC systems that will provide the High Read more…

By Tiffany Trader

Joliot-Curie Supercomputer Used to Build First Full, High-Fidelity Aircraft Engine Simulation

July 14, 2020

When industrial designers plan the design of a new element of a vehicle’s propulsion or exterior, they typically use fluid dynamics to optimize airflow and in Read more…

By Oliver Peckham

Japan’s Fugaku Tops Global Supercomputing Rankings

June 22, 2020

A new Top500 champ was unveiled today. Supercomputer Fugaku, the pride of Japan and the namesake of Mount Fuji, vaulted to the top of the 55th edition of the To Read more…

By Tiffany Trader

Microsoft Azure Adds A100 GPU Instances for ‘Supercomputer-Class AI’ in the Cloud

August 19, 2020

Microsoft Azure continues to infuse its cloud platform with HPC- and AI-directed technologies. Today the cloud services purveyor announced a new virtual machine Read more…

By Tiffany Trader

$100B Plan Submitted for Massive Remake and Expansion of NSF

May 27, 2020

Legislation to reshape, expand - and rename - the National Science Foundation has been submitted in both the U.S. House and Senate. The proposal, which seems to Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This