New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

By John Russell

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. No single architecture is best. This month researchers report developing a hybrid approach that combines cloud (AWS), local high performance compute (LHPC) clusters, and supercomputers.

Their fascinating paper, A hybrid computational strategy to address WGS variant analysis in >5000 samples, spells out in some detail the obstacles associated with using each resource and how to divide the work to maximize throughput and minimize cost. Computational resources used included: Amazon AWS; a 4000-core in-house cluster at Baylor College of Medicine; IBM power PC Blue BioU at Rice University and Rhea at Oak Ridge National Laboratory (ORNL). DNAnexus was also a collaborator.

“Large cohort studies,” write the authors, “are extremely useful for discovering genotype phenotype associations and to characterize variation with great public health significance. The decreasing costs of sequencing are increasingly making it possible to sequence whole genomes in the millions in the coming years. The past decade has also seen the development of many joint calling approaches for genomic data produced with low coverage whole genome sequencing. Joint calling is necessary for low to medium coverage sequencing projects (~10×) as it further reduces false positives rate especially at the rarer end of the site frequency spectrum.”

The multidisciplinary team, led by Baylor, developed a genomics analysis pipeline – goSNAP – that distributes the workflow across the platforms. As a proof of principle, analysis was performed of Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under six weeks using four state-of-the-art callers (SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper, and GotCloud.)

“The entire operation was finished in 50 days with a total core hour usage of ~ 5.2 million across all the infrastructures. Each aligned BAM file was split into 1 Mbp region for joint calling on AWS. This created a cache data footprint of 360 TB with a time to live not exceeding 14 days. Only 6 TB of data was transferred across all platforms. The goSNAP pipeline is designed to minimize egress charges, data storage charges and data transfer costs. It optimizes on concurrent core usage to be cost effective and fast. To the best of our knowledge, ensemble calling on a WGS cohort with over 5000 samples has not been done before and this approach can be easily scaled to 10,000 samples.”

Manjunath Gorentla Venkata, ORNL
Manjunath Gorentla Venkata, ORNL

“This is an excellent example of two scientific communities coming together to address challenging science problems. We are happy to have played a part in conducting the analysis of such unprecedented scale,” said Manjunath Gorentla Venkata, co-author and ORNL computer scientist in an account of the work on the ORNL website. “While researchers from Baylor discussed the problem, we did not have a ready-made solution. After multiple discussions, we were convinced that mapping pipeline components based on system architecture strengths and tailoring parameters to the architecture would provide quality analysis with a relatively short turnaround.”

“There was previously no infrastructure for this large of a set, at 5,000 samples,” said Dr. Eric Boerwinkle, associate director of Baylor’s Human Genome Sequencing Center and dean of UT Health School of Public Health. “To address this, we employed a combination of platforms to perform large-scale variant calling, while maintaining high quality data.”

Fuli Yu, Baylor College of Medicine, led the study
Fuli Yu, Baylor College of Medicine, led the study

Their work, report the authors, demonstrates variant calling pipelines using a hybrid computational environment can leverage the strengths of each architecture to process cohorts with thousands of whole genome samples in real-time while minimizing operational costs.

The specifics of how the workflow (variant site identification; consensus site filtering step; genotype likelihood; and imputation & phasing) is divided up among the computational resources are best gleaned directly from the paper as some steps overlap. The authors write,” There has been some past work on porting state-of-the-art variant calling pipelines for targeted whole exome sequencing of thousands of samples to the Amazon Web Services (AWS) cloud, but a cloud based ensemble calling workflow for thousands of whole genomes is lacking.”

More broadly the authors note the following issues with each class of infrastructure:

  • Most LHPCs with typical research environments have few PBs of storage and millions of core-hours per month and are constrained by hardware limits on data storage, computing power and data transfer bandwidth to carry out large computes.
  • Scalability is not a problem for the AWS computing environment as it allows flexibility to increases the compute and data resources with a ‘pay per use’ model. However, the outbound data transfers incurs a cost which scales linearly with the amount of data transferred. It is also necessary to optimize on all aspects of the compute including memory bandwidth and capacity (RAM), computing cores (CPU) and IO capacity and bandwidth (HDD) to make optimal use of the instances and achieve cost-effectiveness. For projects involving big data, there is an additional cost of implementing data parallelization to overcome the limitations of local instance on HDD space.
  • The large supercomputing infrastructure has an extremely large data store, premium hardware optimized for high IO bandwidth, low-latency and high bandwidth network, and dedicated hardware and software support for CPU-intensive operations, but computing jobs have to finish within hard wall time limits. (For example, Titan at ORNL requires all jobs to finish within 24 hrs. Scheduling delays in allocating large number of resources can add to the turnaround times.)

Click on the image below to get a better sense of how the computational were used in this study.

screen-shot-2016-09-15-at-4-21-12-pm

The team used the Rhea computing cluster at the Oak Ridge Leadership Computing Facility to reconstruct chromosomal segments inherited from parents and to statistically predict the makeup of incomplete or missing genetic sequences from discovered genetic markers. This step was the most computationally intensive and required the greatest amount of power to calculate the probabilities of the most likely genetic patterns. More than 75 percent of this step was finished on Rhea and the rest was completed on supercomputers at Rice University. Baylor utilized the Amazon Web Services cloud computing environment to store raw data and discover genetic variants across the thousands of genome samples.

The authors conclude:

“With increasing number of genomic datasets freely available on the AWS cloud, the next generation of variant calling pipelines will also be increasingly common in the AWS environment. While the costs of storage and compute cores in the AWS environment is declining, it may still be prohibitively costly to carry out many steps of standard variant calling workflow on the cloud. A hybrid computational approach involving multiple HPC systems may be an important future direction to explore. Our work on the goSNAP pipeline demonstrates that using a hybrid computation strategy can be cost effective and fast even with thousands of individual genomes.”

Link to ORNL article:

https://www.ornl.gov/news/ornl-helps-develop-hybrid-computational-strategy-efficient-sequencing-massive-genome-datasets

Link to Baylor article:

https://www.bcm.edu/news/genome-sequencing/new-scalable-whole-genome-data-analysis

Link to paper on open access publisher BioMed Central (Sep 10, 2016,) https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1211-6

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This