New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

By John Russell

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. No single architecture is best. This month researchers report developing a hybrid approach that combines cloud (AWS), local high performance compute (LHPC) clusters, and supercomputers.

Their fascinating paper, A hybrid computational strategy to address WGS variant analysis in >5000 samples, spells out in some detail the obstacles associated with using each resource and how to divide the work to maximize throughput and minimize cost. Computational resources used included: Amazon AWS; a 4000-core in-house cluster at Baylor College of Medicine; IBM power PC Blue BioU at Rice University and Rhea at Oak Ridge National Laboratory (ORNL). DNAnexus was also a collaborator.

“Large cohort studies,” write the authors, “are extremely useful for discovering genotype phenotype associations and to characterize variation with great public health significance. The decreasing costs of sequencing are increasingly making it possible to sequence whole genomes in the millions in the coming years. The past decade has also seen the development of many joint calling approaches for genomic data produced with low coverage whole genome sequencing. Joint calling is necessary for low to medium coverage sequencing projects (~10×) as it further reduces false positives rate especially at the rarer end of the site frequency spectrum.”

The multidisciplinary team, led by Baylor, developed a genomics analysis pipeline – goSNAP – that distributes the workflow across the platforms. As a proof of principle, analysis was performed of Cohorts for Heart And Aging Research in Genomic Epidemiology (CHARGE) WGS freeze 3 dataset in which joint calling, imputation and phasing of over 5300 whole genome samples was produced in under six weeks using four state-of-the-art callers (SNPTools, GATK-HaplotypeCaller, GATK-UnifiedGenotyper, and GotCloud.)

“The entire operation was finished in 50 days with a total core hour usage of ~ 5.2 million across all the infrastructures. Each aligned BAM file was split into 1 Mbp region for joint calling on AWS. This created a cache data footprint of 360 TB with a time to live not exceeding 14 days. Only 6 TB of data was transferred across all platforms. The goSNAP pipeline is designed to minimize egress charges, data storage charges and data transfer costs. It optimizes on concurrent core usage to be cost effective and fast. To the best of our knowledge, ensemble calling on a WGS cohort with over 5000 samples has not been done before and this approach can be easily scaled to 10,000 samples.”

Manjunath Gorentla Venkata, ORNL
Manjunath Gorentla Venkata, ORNL

“This is an excellent example of two scientific communities coming together to address challenging science problems. We are happy to have played a part in conducting the analysis of such unprecedented scale,” said Manjunath Gorentla Venkata, co-author and ORNL computer scientist in an account of the work on the ORNL website. “While researchers from Baylor discussed the problem, we did not have a ready-made solution. After multiple discussions, we were convinced that mapping pipeline components based on system architecture strengths and tailoring parameters to the architecture would provide quality analysis with a relatively short turnaround.”

“There was previously no infrastructure for this large of a set, at 5,000 samples,” said Dr. Eric Boerwinkle, associate director of Baylor’s Human Genome Sequencing Center and dean of UT Health School of Public Health. “To address this, we employed a combination of platforms to perform large-scale variant calling, while maintaining high quality data.”

Fuli Yu, Baylor College of Medicine, led the study
Fuli Yu, Baylor College of Medicine, led the study

Their work, report the authors, demonstrates variant calling pipelines using a hybrid computational environment can leverage the strengths of each architecture to process cohorts with thousands of whole genome samples in real-time while minimizing operational costs.

The specifics of how the workflow (variant site identification; consensus site filtering step; genotype likelihood; and imputation & phasing) is divided up among the computational resources are best gleaned directly from the paper as some steps overlap. The authors write,” There has been some past work on porting state-of-the-art variant calling pipelines for targeted whole exome sequencing of thousands of samples to the Amazon Web Services (AWS) cloud, but a cloud based ensemble calling workflow for thousands of whole genomes is lacking.”

More broadly the authors note the following issues with each class of infrastructure:

  • Most LHPCs with typical research environments have few PBs of storage and millions of core-hours per month and are constrained by hardware limits on data storage, computing power and data transfer bandwidth to carry out large computes.
  • Scalability is not a problem for the AWS computing environment as it allows flexibility to increases the compute and data resources with a ‘pay per use’ model. However, the outbound data transfers incurs a cost which scales linearly with the amount of data transferred. It is also necessary to optimize on all aspects of the compute including memory bandwidth and capacity (RAM), computing cores (CPU) and IO capacity and bandwidth (HDD) to make optimal use of the instances and achieve cost-effectiveness. For projects involving big data, there is an additional cost of implementing data parallelization to overcome the limitations of local instance on HDD space.
  • The large supercomputing infrastructure has an extremely large data store, premium hardware optimized for high IO bandwidth, low-latency and high bandwidth network, and dedicated hardware and software support for CPU-intensive operations, but computing jobs have to finish within hard wall time limits. (For example, Titan at ORNL requires all jobs to finish within 24 hrs. Scheduling delays in allocating large number of resources can add to the turnaround times.)

Click on the image below to get a better sense of how the computational were used in this study.


The team used the Rhea computing cluster at the Oak Ridge Leadership Computing Facility to reconstruct chromosomal segments inherited from parents and to statistically predict the makeup of incomplete or missing genetic sequences from discovered genetic markers. This step was the most computationally intensive and required the greatest amount of power to calculate the probabilities of the most likely genetic patterns. More than 75 percent of this step was finished on Rhea and the rest was completed on supercomputers at Rice University. Baylor utilized the Amazon Web Services cloud computing environment to store raw data and discover genetic variants across the thousands of genome samples.

The authors conclude:

“With increasing number of genomic datasets freely available on the AWS cloud, the next generation of variant calling pipelines will also be increasingly common in the AWS environment. While the costs of storage and compute cores in the AWS environment is declining, it may still be prohibitively costly to carry out many steps of standard variant calling workflow on the cloud. A hybrid computational approach involving multiple HPC systems may be an important future direction to explore. Our work on the goSNAP pipeline demonstrates that using a hybrid computation strategy can be cost effective and fast even with thousands of individual genomes.”

Link to ORNL article:

Link to Baylor article:

Link to paper on open access publisher BioMed Central (Sep 10, 2016,)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian and American Scientists Achieve 50% Increase in Data Transmission Speed

September 20, 2018

As high-performance computing becomes increasingly data-intensive and the demand for shorter turnaround times grows, data transfer speed becomes an ever more important bottleneck. Now, in an article published in IEEE Tra Read more…

By Oliver Peckham

IBM to Brand Rescale’s HPC-in-Cloud Platform

September 20, 2018

HPC (or big compute)-in-the-cloud platform provider Rescale has formalized the work it’s been doing in partnership with public cloud vendors by announcing its Powered by Rescale program – with IBM as its first named Read more…

By Doug Black

Democratization of HPC Part 1: Simulation Sheds Light on Building Dispute

September 20, 2018

This is the first of three articles demonstrating the growing acceptance of High Performance Computing especially in new user communities and application areas. Major reasons for this trend are the ongoing improvements i Read more…

By Wolfgang Gentzsch

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Clouds Over the Ocean – a Healthcare Perspective

Advances in precision medicine, genomics, and imaging; the widespread adoption of electronic health records; and the proliferation of medical Internet of Things (IoT) and mobile devices are resulting in an explosion of structured and unstructured healthcare-related data. Read more…

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Gordon Bell Prize used Summit in their work. That’s impres Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This