ORNL’s Future Technologies Group Tackles Memory and More

By John Russell

October 13, 2016

“Imagine if you’ve got a Titan-size computer (27 PFlops) and it has main memory that’s partially non-volatile memory and you could just leave your data in that memory between executions then just come back and start computing on that data as it sits in memory,” says Jeffrey Vetter, group leader of the Future Technologies Group at Oak Ridge National Labs.

“There are challenges with that in terms of how the systems are allocated, how the systems are organized and scheduled, and so those are the kind of things we’re trying to see before all the users and other folks see them and trying to come up with some solutions.” That in brief is the mission FTG is charged with by its main sponsors, the Department of Energy (DOE) and NSF, as well as collaboration with industry.

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Formed roughly 13 years ago as a team focused on emerging technologies for HPC and led by Vetter who joined ORNL from Lawrence Livermore National Lab, FTG results have proven influential. Perhaps most notable is work on GPU architectures in the 2008 timeframe.

“We took those results and shared them with our sponsors (DOE and NSF) and they impacted the timelines and architectures for the systems we have now. We managed to become an XSEDE site running the largest GPU system in NSF and at Oak Ridge our results were very instrumental in Titan becoming a GPU-based system,” says Vetter.

“The idea [behind FTG] is that you’ve got these technologies and there’s a lot of assessment that has to happen in terms of mission applications. It’s not just this new technology is great for one application; it is how do we deploy it widely to our users. How do we make the programming model productive and the tool ecosystem productive around these [architectures] and try to find example of applications that perform well on these architectures.”

GPU-based systems, he notes, have become very effective for molecular dynamics, quantum chemistry dynamics, CFD, and neutron transport. FTG work has played a role helping to bring that about. The constant thread running through FTG projects is work to develop new insight and computational tools that allow emerging technologies to be put to useful work on science or DOE mission applications. The group’s work product, says Vetter, typically includes papers, software, and scientific advance – the perfect “trifecta” when everything works.

The influential GPU work is a good example. “We have several papers on our GPU work with applications,” says Vetter. “Two of the primary efforts [in the 2008 timeframe influencing system direction and timing] were:”

  • DCA++: a quantum materials application: Alvarez, M. Summers et al., “New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-T c superconductors (Gordon Bell Prize Winner),” Proc. 2008 ACM/IEEE conference on Supercomputing Conference on High Performance Networking and Computing, 2008; J.S. Meredith, G. Alvarez et al., “Accuracy and performance of graphics processors: A Quantum Monte Carlo application case study,” Parallel Comput., 35(3):151-63, 2009, 10.1016/j.parco.2008.12.004.
  • S3D: a combustion application: Spafford, J. Meredith et al., “Accelerating S3D: A GPGPU Case Study,” in Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009). Delft, The Netherlands, 2009

screen-shot-2016-10-13-at-11-07-35-amIn recent years FTG has started looking a memory architecture. Vetter notes memory cuts across all areas of computing – scientific HPC, traditional enterprise, and mobile. “The Department of Energy funded a project with my group plus some external collaborators at Michigan and Penn state and HP to look at how non-volatile memory could offset this trend of shrinking node memory capacity,” he says.

One challenge, of course, is that DRAMs don’t scale as they once did. They are also power hungry compared to other technologies. Vetter’s group is tracking various memory technologies (FLASH in terms of NAND and 3D NAND as well as resistive memristors, resistive RAM, phase change, etc.)

“We say, OK this technology looks like it has a nice trajectory and [we] go back to determine how can our applications make use of it and how can it be architected into a system so that users can make use of it. We’ve started looking very carefully at programming models and user scenarios of how non volatile memory could be integrated into a systems and how it would be used and those two are interrelated right,” he says.

“Right now people put an SSD in a system and you’ve got non-volatile memory in a system but it’s usually hidden behind a POSIX IO or some type of IO interface that makes it a little less interesting and lower performing. If you think about moving that memory higher and moving it closer and closer to the processor,” says Vetter, the benefits could be substantial, such as in the Titan scenario mentioned earlier.

Seyong Lee, ORNL Future Technologies Group
Seyong Lee, ORNL Future Technologies Group

Exposing these new memory hierarchies directly to applications to take advantage of them is a hot topic these days. Along those lines Vetter and his FTG colleagues Joel Denny and Seyong Lee recently published a new paper – NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems[i].

Here are two brief excerpts:

  • “As the NVM technologies continue to improve, they become more credible for integration at other levels of the storage and memory hierarchy, such as either a peer or replacement for DRAM. In this case, scientists will be forced to redesign the architecture of the memory hierarchy, the software stack, and, possibly, their applications to gain the full advantages of these new capabilities. Simply put, we posit that these new memory systems will need to be exposed to applications as first-class language constructs with full support from the software development tools (e.g., compilers, libraries) to employ them efficiently, correctly, and portably.”
  • “[W]e present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data.”

screen-shot-2016-10-13-at-11-08-24-amFTG’s early focus was on heterogeneous computing “because we thought there were going to be several options, things like multicore, early GPUs, and even FPGAs,” says Vetter wryly at what hardly sounds leading edge today. “So we started looking at those in terms of programming models and expected performance and shortcoming and benefits of the architectures.” Among projects showcased today on the FTG website are – Kneeland Project (heterogeneous/GPU computing), Oxbow Program (tools for characterizing of parallel applications), OpenARC (open-sourced, OpenACC compiler).

Currently there are 11 members of FTG comprised of a mix of post-docs and staff scientists etc. The number fluctuates, says Vetter: “Some stay for a few years and some stay for a decade or more. One of the things I’ll say that I really like about the lab is that it’s open. We can collaborate and publish and our software is open so we can work with pretty much everyone we want to work with. The goal is to advance science not just develop another software tool or just write another paper but actually have impact on our applications teams and the DOE mission.”

Vetter notes FTG mission continues to expand, not least because its primary sponsor, DOE, is also changing its perspective.

“DOE right now has started to seriously think what happens after the exascale and what types of computing not only can we use but also how can we even contribute to next generation technologies,” he says. DOE, he notes, has a great deal of materials science research going on – “low level chemistry and other things going on in their nanoscale materials centers” – which may be needed in the post Moore, post exascale era and DOE, he says, is working to become a contributor to solving these problems, not just a downstream consumer.”

As you would expect, the national labs communicate regularly and collaborate. Vetter, for example, has worked with Adolfy Hoise of Pacific Northwest National Laboratory (PNNL) and director of its Center for Advanced Technology Evaluation, and others putting on workshop to “discuss performance analysis and modeling and simulating on these types of architectures.” Vetter was also last year’s Technical Program Chair for SC15.

The FTG has come a long way since its founding. “When I first joined Oak Ridge I think we had a 1Tflops Cray on the floor and now we have a 27Pflops Titan, and hopefully a 200Pflops machine soon. I think this is a great time to be in computer science because we’re entering this space where it’s not a given that we’ll just get a next generation x86. We have to start thinking very carefully about these choices and that puts us in a great mode for science and engineering. FPGAs, ASICS, specialized processors are going top help round out the CMOS but what will be next?”

[i] HPDC ’16 Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing; Pages 125-136; ISBN: 978-1-4503-4314-5 doi>10.1145/2907294.2907303

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire