ORNL’s Future Technologies Group Tackles Memory and More

By John Russell

October 13, 2016

“Imagine if you’ve got a Titan-size computer (27 PFlops) and it has main memory that’s partially non-volatile memory and you could just leave your data in that memory between executions then just come back and start computing on that data as it sits in memory,” says Jeffrey Vetter, group leader of the Future Technologies Group at Oak Ridge National Labs.

“There are challenges with that in terms of how the systems are allocated, how the systems are organized and scheduled, and so those are the kind of things we’re trying to see before all the users and other folks see them and trying to come up with some solutions.” That in brief is the mission FTG is charged with by its main sponsors, the Department of Energy (DOE) and NSF, as well as collaboration with industry.

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Formed roughly 13 years ago as a team focused on emerging technologies for HPC and led by Vetter who joined ORNL from Lawrence Livermore National Lab, FTG results have proven influential. Perhaps most notable is work on GPU architectures in the 2008 timeframe.

“We took those results and shared them with our sponsors (DOE and NSF) and they impacted the timelines and architectures for the systems we have now. We managed to become an XSEDE site running the largest GPU system in NSF and at Oak Ridge our results were very instrumental in Titan becoming a GPU-based system,” says Vetter.

“The idea [behind FTG] is that you’ve got these technologies and there’s a lot of assessment that has to happen in terms of mission applications. It’s not just this new technology is great for one application; it is how do we deploy it widely to our users. How do we make the programming model productive and the tool ecosystem productive around these [architectures] and try to find example of applications that perform well on these architectures.”

GPU-based systems, he notes, have become very effective for molecular dynamics, quantum chemistry dynamics, CFD, and neutron transport. FTG work has played a role helping to bring that about. The constant thread running through FTG projects is work to develop new insight and computational tools that allow emerging technologies to be put to useful work on science or DOE mission applications. The group’s work product, says Vetter, typically includes papers, software, and scientific advance – the perfect “trifecta” when everything works.

The influential GPU work is a good example. “We have several papers on our GPU work with applications,” says Vetter. “Two of the primary efforts [in the 2008 timeframe influencing system direction and timing] were:”

  • DCA++: a quantum materials application: Alvarez, M. Summers et al., “New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-T c superconductors (Gordon Bell Prize Winner),” Proc. 2008 ACM/IEEE conference on Supercomputing Conference on High Performance Networking and Computing, 2008; J.S. Meredith, G. Alvarez et al., “Accuracy and performance of graphics processors: A Quantum Monte Carlo application case study,” Parallel Comput., 35(3):151-63, 2009, 10.1016/j.parco.2008.12.004.
  • S3D: a combustion application: Spafford, J. Meredith et al., “Accelerating S3D: A GPGPU Case Study,” in Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009). Delft, The Netherlands, 2009

screen-shot-2016-10-13-at-11-07-35-amIn recent years FTG has started looking a memory architecture. Vetter notes memory cuts across all areas of computing – scientific HPC, traditional enterprise, and mobile. “The Department of Energy funded a project with my group plus some external collaborators at Michigan and Penn state and HP to look at how non-volatile memory could offset this trend of shrinking node memory capacity,” he says.

One challenge, of course, is that DRAMs don’t scale as they once did. They are also power hungry compared to other technologies. Vetter’s group is tracking various memory technologies (FLASH in terms of NAND and 3D NAND as well as resistive memristors, resistive RAM, phase change, etc.)

“We say, OK this technology looks like it has a nice trajectory and [we] go back to determine how can our applications make use of it and how can it be architected into a system so that users can make use of it. We’ve started looking very carefully at programming models and user scenarios of how non volatile memory could be integrated into a systems and how it would be used and those two are interrelated right,” he says.

“Right now people put an SSD in a system and you’ve got non-volatile memory in a system but it’s usually hidden behind a POSIX IO or some type of IO interface that makes it a little less interesting and lower performing. If you think about moving that memory higher and moving it closer and closer to the processor,” says Vetter, the benefits could be substantial, such as in the Titan scenario mentioned earlier.

Seyong Lee, ORNL Future Technologies Group
Seyong Lee, ORNL Future Technologies Group

Exposing these new memory hierarchies directly to applications to take advantage of them is a hot topic these days. Along those lines Vetter and his FTG colleagues Joel Denny and Seyong Lee recently published a new paper – NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems[i].

Here are two brief excerpts:

  • “As the NVM technologies continue to improve, they become more credible for integration at other levels of the storage and memory hierarchy, such as either a peer or replacement for DRAM. In this case, scientists will be forced to redesign the architecture of the memory hierarchy, the software stack, and, possibly, their applications to gain the full advantages of these new capabilities. Simply put, we posit that these new memory systems will need to be exposed to applications as first-class language constructs with full support from the software development tools (e.g., compilers, libraries) to employ them efficiently, correctly, and portably.”
  • “[W]e present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data.”

screen-shot-2016-10-13-at-11-08-24-amFTG’s early focus was on heterogeneous computing “because we thought there were going to be several options, things like multicore, early GPUs, and even FPGAs,” says Vetter wryly at what hardly sounds leading edge today. “So we started looking at those in terms of programming models and expected performance and shortcoming and benefits of the architectures.” Among projects showcased today on the FTG website are – Kneeland Project (heterogeneous/GPU computing), Oxbow Program (tools for characterizing of parallel applications), OpenARC (open-sourced, OpenACC compiler).

Currently there are 11 members of FTG comprised of a mix of post-docs and staff scientists etc. The number fluctuates, says Vetter: “Some stay for a few years and some stay for a decade or more. One of the things I’ll say that I really like about the lab is that it’s open. We can collaborate and publish and our software is open so we can work with pretty much everyone we want to work with. The goal is to advance science not just develop another software tool or just write another paper but actually have impact on our applications teams and the DOE mission.”

Vetter notes FTG mission continues to expand, not least because its primary sponsor, DOE, is also changing its perspective.

“DOE right now has started to seriously think what happens after the exascale and what types of computing not only can we use but also how can we even contribute to next generation technologies,” he says. DOE, he notes, has a great deal of materials science research going on – “low level chemistry and other things going on in their nanoscale materials centers” – which may be needed in the post Moore, post exascale era and DOE, he says, is working to become a contributor to solving these problems, not just a downstream consumer.”

As you would expect, the national labs communicate regularly and collaborate. Vetter, for example, has worked with Adolfy Hoise of Pacific Northwest National Laboratory (PNNL) and director of its Center for Advanced Technology Evaluation, and others putting on workshop to “discuss performance analysis and modeling and simulating on these types of architectures.” Vetter was also last year’s Technical Program Chair for SC15.

The FTG has come a long way since its founding. “When I first joined Oak Ridge I think we had a 1Tflops Cray on the floor and now we have a 27Pflops Titan, and hopefully a 200Pflops machine soon. I think this is a great time to be in computer science because we’re entering this space where it’s not a given that we’ll just get a next generation x86. We have to start thinking very carefully about these choices and that puts us in a great mode for science and engineering. FPGAs, ASICS, specialized processors are going top help round out the CMOS but what will be next?”

[i] HPDC ’16 Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing; Pages 125-136; ISBN: 978-1-4503-4314-5 doi>10.1145/2907294.2907303

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This