ORNL’s Future Technologies Group Tackles Memory and More

By John Russell

October 13, 2016

“Imagine if you’ve got a Titan-size computer (27 PFlops) and it has main memory that’s partially non-volatile memory and you could just leave your data in that memory between executions then just come back and start computing on that data as it sits in memory,” says Jeffrey Vetter, group leader of the Future Technologies Group at Oak Ridge National Labs.

“There are challenges with that in terms of how the systems are allocated, how the systems are organized and scheduled, and so those are the kind of things we’re trying to see before all the users and other folks see them and trying to come up with some solutions.” That in brief is the mission FTG is charged with by its main sponsors, the Department of Energy (DOE) and NSF, as well as collaboration with industry.

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Formed roughly 13 years ago as a team focused on emerging technologies for HPC and led by Vetter who joined ORNL from Lawrence Livermore National Lab, FTG results have proven influential. Perhaps most notable is work on GPU architectures in the 2008 timeframe.

“We took those results and shared them with our sponsors (DOE and NSF) and they impacted the timelines and architectures for the systems we have now. We managed to become an XSEDE site running the largest GPU system in NSF and at Oak Ridge our results were very instrumental in Titan becoming a GPU-based system,” says Vetter.

“The idea [behind FTG] is that you’ve got these technologies and there’s a lot of assessment that has to happen in terms of mission applications. It’s not just this new technology is great for one application; it is how do we deploy it widely to our users. How do we make the programming model productive and the tool ecosystem productive around these [architectures] and try to find example of applications that perform well on these architectures.”

GPU-based systems, he notes, have become very effective for molecular dynamics, quantum chemistry dynamics, CFD, and neutron transport. FTG work has played a role helping to bring that about. The constant thread running through FTG projects is work to develop new insight and computational tools that allow emerging technologies to be put to useful work on science or DOE mission applications. The group’s work product, says Vetter, typically includes papers, software, and scientific advance – the perfect “trifecta” when everything works.

The influential GPU work is a good example. “We have several papers on our GPU work with applications,” says Vetter. “Two of the primary efforts [in the 2008 timeframe influencing system direction and timing] were:”

  • DCA++: a quantum materials application: Alvarez, M. Summers et al., “New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-T c superconductors (Gordon Bell Prize Winner),” Proc. 2008 ACM/IEEE conference on Supercomputing Conference on High Performance Networking and Computing, 2008; J.S. Meredith, G. Alvarez et al., “Accuracy and performance of graphics processors: A Quantum Monte Carlo application case study,” Parallel Comput., 35(3):151-63, 2009, 10.1016/j.parco.2008.12.004.
  • S3D: a combustion application: Spafford, J. Meredith et al., “Accelerating S3D: A GPGPU Case Study,” in Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009). Delft, The Netherlands, 2009

screen-shot-2016-10-13-at-11-07-35-amIn recent years FTG has started looking a memory architecture. Vetter notes memory cuts across all areas of computing – scientific HPC, traditional enterprise, and mobile. “The Department of Energy funded a project with my group plus some external collaborators at Michigan and Penn state and HP to look at how non-volatile memory could offset this trend of shrinking node memory capacity,” he says.

One challenge, of course, is that DRAMs don’t scale as they once did. They are also power hungry compared to other technologies. Vetter’s group is tracking various memory technologies (FLASH in terms of NAND and 3D NAND as well as resistive memristors, resistive RAM, phase change, etc.)

“We say, OK this technology looks like it has a nice trajectory and [we] go back to determine how can our applications make use of it and how can it be architected into a system so that users can make use of it. We’ve started looking very carefully at programming models and user scenarios of how non volatile memory could be integrated into a systems and how it would be used and those two are interrelated right,” he says.

“Right now people put an SSD in a system and you’ve got non-volatile memory in a system but it’s usually hidden behind a POSIX IO or some type of IO interface that makes it a little less interesting and lower performing. If you think about moving that memory higher and moving it closer and closer to the processor,” says Vetter, the benefits could be substantial, such as in the Titan scenario mentioned earlier.

Seyong Lee, ORNL Future Technologies Group
Seyong Lee, ORNL Future Technologies Group

Exposing these new memory hierarchies directly to applications to take advantage of them is a hot topic these days. Along those lines Vetter and his FTG colleagues Joel Denny and Seyong Lee recently published a new paper – NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems[i].

Here are two brief excerpts:

  • “As the NVM technologies continue to improve, they become more credible for integration at other levels of the storage and memory hierarchy, such as either a peer or replacement for DRAM. In this case, scientists will be forced to redesign the architecture of the memory hierarchy, the software stack, and, possibly, their applications to gain the full advantages of these new capabilities. Simply put, we posit that these new memory systems will need to be exposed to applications as first-class language constructs with full support from the software development tools (e.g., compilers, libraries) to employ them efficiently, correctly, and portably.”
  • “[W]e present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data.”

screen-shot-2016-10-13-at-11-08-24-amFTG’s early focus was on heterogeneous computing “because we thought there were going to be several options, things like multicore, early GPUs, and even FPGAs,” says Vetter wryly at what hardly sounds leading edge today. “So we started looking at those in terms of programming models and expected performance and shortcoming and benefits of the architectures.” Among projects showcased today on the FTG website are – Kneeland Project (heterogeneous/GPU computing), Oxbow Program (tools for characterizing of parallel applications), OpenARC (open-sourced, OpenACC compiler).

Currently there are 11 members of FTG comprised of a mix of post-docs and staff scientists etc. The number fluctuates, says Vetter: “Some stay for a few years and some stay for a decade or more. One of the things I’ll say that I really like about the lab is that it’s open. We can collaborate and publish and our software is open so we can work with pretty much everyone we want to work with. The goal is to advance science not just develop another software tool or just write another paper but actually have impact on our applications teams and the DOE mission.”

Vetter notes FTG mission continues to expand, not least because its primary sponsor, DOE, is also changing its perspective.

“DOE right now has started to seriously think what happens after the exascale and what types of computing not only can we use but also how can we even contribute to next generation technologies,” he says. DOE, he notes, has a great deal of materials science research going on – “low level chemistry and other things going on in their nanoscale materials centers” – which may be needed in the post Moore, post exascale era and DOE, he says, is working to become a contributor to solving these problems, not just a downstream consumer.”

As you would expect, the national labs communicate regularly and collaborate. Vetter, for example, has worked with Adolfy Hoise of Pacific Northwest National Laboratory (PNNL) and director of its Center for Advanced Technology Evaluation, and others putting on workshop to “discuss performance analysis and modeling and simulating on these types of architectures.” Vetter was also last year’s Technical Program Chair for SC15.

The FTG has come a long way since its founding. “When I first joined Oak Ridge I think we had a 1Tflops Cray on the floor and now we have a 27Pflops Titan, and hopefully a 200Pflops machine soon. I think this is a great time to be in computer science because we’re entering this space where it’s not a given that we’ll just get a next generation x86. We have to start thinking very carefully about these choices and that puts us in a great mode for science and engineering. FPGAs, ASICS, specialized processors are going top help round out the CMOS but what will be next?”

[i] HPDC ’16 Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing; Pages 125-136; ISBN: 978-1-4503-4314-5 doi>10.1145/2907294.2907303

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch bits onto glass with a ceramic coating. The “grey ceramic� Read more…

Weekly Wire Roundup: July 15-July 19, 2024

July 19, 2024

It's summertime (for most of us), and the HPC-related headlines aren't as plentiful as they once were. But not everything has to happen at high tide-- this week still had some waves! Idaho National Laboratory's Bitter Read more…

ARM, Fujitsu Targeting Open-source Software for Power Efficiency in 2-nm Chip

July 19, 2024

Fujitsu and ARM are relying on open-source software to bring power efficiency to an air-cooled supercomputing chip that will ship in 2027. Monaka chip, which will be made using the 2-nanometer process, is based on the Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI projects.). Other tools have joined the CUDA castle siege. AMD Read more…

Quantum Watchers – Terrific Interview with Caltech’s John Preskill by CERN

July 17, 2024

In case you missed it, there's a fascinating interview with John Preskill, the prominent Caltech physicist and pioneering quantum computing researcher that was recently posted by CERN’s department of experimental physi Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to communities across the globe. As climate change is warming ocea Read more…

Can Cerabyte Crack the $1-Per-Petabyte Barrier with Ceramic Storage?

July 20, 2024

A German startup named Cerabyte is hoping to solve the burgeoning market for secondary and archival data storage with a novel approach that uses lasers to etch Read more…

SCALEing the CUDA Castle

July 18, 2024

In a previous article, HPCwire has reported on a way in which AMD can get across the CUDA moat that protects the Nvidia CUDA castle (at least for PyTorch AI pro Read more…

Aurora AI-Driven Atmosphere Model is 5,000x Faster Than Traditional Systems

July 16, 2024

While the onset of human-driven climate change brings with it many horrors, the increase in the frequency and strength of storms poses an enormous threat to com Read more…

Shutterstock 1886124835

Researchers Say Memory Bandwidth and NVLink Speeds in Hopper Not So Simple

July 15, 2024

Researchers measured the real-world bandwidth of Nvidia's Grace Hopper superchip, with the chip-to-chip interconnect results falling well short of theoretical c Read more…

Shutterstock 2203611339

NSF Issues Next Solicitation and More Detail on National Quantum Virtual Laboratory

July 10, 2024

After percolating for roughly a year, NSF has issued the next solicitation for the National Quantum Virtual Lab program — this one focused on design and imple Read more…

NCSA’s SEAS Team Keeps APACE of AlphaFold2

July 9, 2024

High-performance computing (HPC) can often be challenging for researchers to use because it requires expertise in working with large datasets, scaling the softw Read more…

Anders Jensen on Europe’s Plan for AI-optimized Supercomputers, Welcoming the UK, and More

July 8, 2024

The recent ISC24 conference in Hamburg showcased LUMI and other leadership-class supercomputers co-funded by the EuroHPC Joint Undertaking (JU), including three Read more…

Generative AI to Account for 1.5% of World’s Power Consumption by 2029

July 8, 2024

Generative AI will take on a larger chunk of the world's power consumption to keep up with the hefty hardware requirements to run applications. "AI chips repres Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock_1687123447

Nvidia Economics: Make $5-$7 for Every $1 Spent on GPUs

June 30, 2024

Nvidia is saying that companies could make $5 to $7 for every $1 invested in GPUs over a four-year period. Customers are investing billions in new Nvidia hardwa Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

AMD Clears Up Messy GPU Roadmap, Upgrades Chips Annually

June 3, 2024

In the world of AI, there's a desperate search for an alternative to Nvidia's GPUs, and AMD is stepping up to the plate. AMD detailed its updated GPU roadmap, w Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

Leading Solution Providers

Contributors

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

IonQ Plots Path to Commercial (Quantum) Advantage

July 2, 2024

IonQ, the trapped ion quantum computing specialist, delivered a progress report last week firming up 2024/25 product goals and reviewing its technology roadmap. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire