ORNL’s Future Technologies Group Tackles Memory and More

By John Russell

October 13, 2016

“Imagine if you’ve got a Titan-size computer (27 PFlops) and it has main memory that’s partially non-volatile memory and you could just leave your data in that memory between executions then just come back and start computing on that data as it sits in memory,” says Jeffrey Vetter, group leader of the Future Technologies Group at Oak Ridge National Labs.

“There are challenges with that in terms of how the systems are allocated, how the systems are organized and scheduled, and so those are the kind of things we’re trying to see before all the users and other folks see them and trying to come up with some solutions.” That in brief is the mission FTG is charged with by its main sponsors, the Department of Energy (DOE) and NSF, as well as collaboration with industry.

Jeffrey Vetter, ORNL Future Technologies Group
Jeffrey Vetter, ORNL Future Technologies Group

Formed roughly 13 years ago as a team focused on emerging technologies for HPC and led by Vetter who joined ORNL from Lawrence Livermore National Lab, FTG results have proven influential. Perhaps most notable is work on GPU architectures in the 2008 timeframe.

“We took those results and shared them with our sponsors (DOE and NSF) and they impacted the timelines and architectures for the systems we have now. We managed to become an XSEDE site running the largest GPU system in NSF and at Oak Ridge our results were very instrumental in Titan becoming a GPU-based system,” says Vetter.

“The idea [behind FTG] is that you’ve got these technologies and there’s a lot of assessment that has to happen in terms of mission applications. It’s not just this new technology is great for one application; it is how do we deploy it widely to our users. How do we make the programming model productive and the tool ecosystem productive around these [architectures] and try to find example of applications that perform well on these architectures.”

GPU-based systems, he notes, have become very effective for molecular dynamics, quantum chemistry dynamics, CFD, and neutron transport. FTG work has played a role helping to bring that about. The constant thread running through FTG projects is work to develop new insight and computational tools that allow emerging technologies to be put to useful work on science or DOE mission applications. The group’s work product, says Vetter, typically includes papers, software, and scientific advance – the perfect “trifecta” when everything works.

The influential GPU work is a good example. “We have several papers on our GPU work with applications,” says Vetter. “Two of the primary efforts [in the 2008 timeframe influencing system direction and timing] were:”

  • DCA++: a quantum materials application: Alvarez, M. Summers et al., “New algorithm to enable 400+ TFlop/s sustained performance in simulations of disorder effects in high-T c superconductors (Gordon Bell Prize Winner),” Proc. 2008 ACM/IEEE conference on Supercomputing Conference on High Performance Networking and Computing, 2008; J.S. Meredith, G. Alvarez et al., “Accuracy and performance of graphics processors: A Quantum Monte Carlo application case study,” Parallel Comput., 35(3):151-63, 2009, 10.1016/j.parco.2008.12.004.
  • S3D: a combustion application: Spafford, J. Meredith et al., “Accelerating S3D: A GPGPU Case Study,” in Seventh International Workshop on Algorithms, Models, and Tools for Parallel Computing on Heterogeneous Platforms (HeteroPar 2009). Delft, The Netherlands, 2009

screen-shot-2016-10-13-at-11-07-35-amIn recent years FTG has started looking a memory architecture. Vetter notes memory cuts across all areas of computing – scientific HPC, traditional enterprise, and mobile. “The Department of Energy funded a project with my group plus some external collaborators at Michigan and Penn state and HP to look at how non-volatile memory could offset this trend of shrinking node memory capacity,” he says.

One challenge, of course, is that DRAMs don’t scale as they once did. They are also power hungry compared to other technologies. Vetter’s group is tracking various memory technologies (FLASH in terms of NAND and 3D NAND as well as resistive memristors, resistive RAM, phase change, etc.)

“We say, OK this technology looks like it has a nice trajectory and [we] go back to determine how can our applications make use of it and how can it be architected into a system so that users can make use of it. We’ve started looking very carefully at programming models and user scenarios of how non volatile memory could be integrated into a systems and how it would be used and those two are interrelated right,” he says.

“Right now people put an SSD in a system and you’ve got non-volatile memory in a system but it’s usually hidden behind a POSIX IO or some type of IO interface that makes it a little less interesting and lower performing. If you think about moving that memory higher and moving it closer and closer to the processor,” says Vetter, the benefits could be substantial, such as in the Titan scenario mentioned earlier.

Seyong Lee, ORNL Future Technologies Group
Seyong Lee, ORNL Future Technologies Group

Exposing these new memory hierarchies directly to applications to take advantage of them is a hot topic these days. Along those lines Vetter and his FTG colleagues Joel Denny and Seyong Lee recently published a new paper – NVL-C: Static Analysis Techniques for Efficient, Correct Programming of Non-Volatile Main Memory Systems[i].

Here are two brief excerpts:

  • “As the NVM technologies continue to improve, they become more credible for integration at other levels of the storage and memory hierarchy, such as either a peer or replacement for DRAM. In this case, scientists will be forced to redesign the architecture of the memory hierarchy, the software stack, and, possibly, their applications to gain the full advantages of these new capabilities. Simply put, we posit that these new memory systems will need to be exposed to applications as first-class language constructs with full support from the software development tools (e.g., compilers, libraries) to employ them efficiently, correctly, and portably.”
  • “[W]e present NVL-C: a novel programming system that facilitates the efficient and correct programming of NVM main memory systems. The NVL-C programming abstraction extends C with a small set of intuitive language features that target NVM main memory, and can be combined directly with traditional C memory model features for DRAM. We have designed these new features to enable compiler analyses and run-time checks that can improve performance and guard against a number of subtle programming errors, which, when left uncorrected, can corrupt NVM-stored data.”

screen-shot-2016-10-13-at-11-08-24-amFTG’s early focus was on heterogeneous computing “because we thought there were going to be several options, things like multicore, early GPUs, and even FPGAs,” says Vetter wryly at what hardly sounds leading edge today. “So we started looking at those in terms of programming models and expected performance and shortcoming and benefits of the architectures.” Among projects showcased today on the FTG website are – Kneeland Project (heterogeneous/GPU computing), Oxbow Program (tools for characterizing of parallel applications), OpenARC (open-sourced, OpenACC compiler).

Currently there are 11 members of FTG comprised of a mix of post-docs and staff scientists etc. The number fluctuates, says Vetter: “Some stay for a few years and some stay for a decade or more. One of the things I’ll say that I really like about the lab is that it’s open. We can collaborate and publish and our software is open so we can work with pretty much everyone we want to work with. The goal is to advance science not just develop another software tool or just write another paper but actually have impact on our applications teams and the DOE mission.”

Vetter notes FTG mission continues to expand, not least because its primary sponsor, DOE, is also changing its perspective.

“DOE right now has started to seriously think what happens after the exascale and what types of computing not only can we use but also how can we even contribute to next generation technologies,” he says. DOE, he notes, has a great deal of materials science research going on – “low level chemistry and other things going on in their nanoscale materials centers” – which may be needed in the post Moore, post exascale era and DOE, he says, is working to become a contributor to solving these problems, not just a downstream consumer.”

As you would expect, the national labs communicate regularly and collaborate. Vetter, for example, has worked with Adolfy Hoise of Pacific Northwest National Laboratory (PNNL) and director of its Center for Advanced Technology Evaluation, and others putting on workshop to “discuss performance analysis and modeling and simulating on these types of architectures.” Vetter was also last year’s Technical Program Chair for SC15.

The FTG has come a long way since its founding. “When I first joined Oak Ridge I think we had a 1Tflops Cray on the floor and now we have a 27Pflops Titan, and hopefully a 200Pflops machine soon. I think this is a great time to be in computer science because we’re entering this space where it’s not a given that we’ll just get a next generation x86. We have to start thinking very carefully about these choices and that puts us in a great mode for science and engineering. FPGAs, ASICS, specialized processors are going top help round out the CMOS but what will be next?”

[i] HPDC ’16 Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing; Pages 125-136; ISBN: 978-1-4503-4314-5 doi>10.1145/2907294.2907303

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPACK, thus taking the Highest LINPACK Award, but also managed t Read more…

By Dan Olds

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s at SC17 in Denver. The previous record, established by German Read more…

By Dan Olds

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at SC17 played to a SRO crowd at a downtown Denver hotel. This w Read more…

By Doug Black

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their e Read more…

By Dan Olds

Student Clusterers Demolish HPCG Record! Nanyang Sweeps Benchmarks

November 16, 2017

Nanyang pulled off the always difficult double-play at this year’s SC Student Cluster Competition. The plucky team from Singapore posted a world record LINPAC Read more…

By Dan Olds

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

The Betting Window is Closed: Final Student Cluster Competition Betting Odds are in!

November 15, 2017

The window has closed and the bettors are clutching their tickets, anxiously awaiting the results of the SC17 Student Cluster Competition. We’ve seen big chan Read more…

By Dan Olds

2017 Student Cluster Competition Benchmarks, Workloads, and Pre-Planned Disasters

November 15, 2017

The students competing in the 2017 Student Cluster Competition in Denver are facing a grueling 48 hour marathon of HPC benchmarks and real scientific applicatio Read more…

By Dan Olds

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This