Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

By James Reinders

June 29, 2017

In this contributed feature, James Reinders explores how AVX-512 vector processing will add flexibility to Intel’s forthcoming “Scalable” processors.

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms based on floating point (FP) numbers. Algorithms can definitely benefit from basing their mathematics on bits and integers (bytes, words) if we could just accelerate them too. FPGAs can do this, but the hardware and software costs remain very high. GPUs aren’t designed to operate on non-FP data. Intel AVX introduced some support, and now Intel AVX-512 is bringing a great deal of flexibility to processors. I will share why I’m convinced that the “AVX512VL” capability in particular is a hidden gem that will let AVX-512 be much more useful for compilers and developers alike.

Fortunately for software developers, Intel has done a poor job keeping the “secret” that AVX-512 is coming to Intel’s recently announced Xeon Scalable processor line very soon. Amazon Web Services has publically touted AVX-512 on Skylake as coming soon!

It is timely to examine the new AVX-512 capabilities and their ability to impact beyond the more regular HPC needs for floating point only workloads. The hidden gem in all this, which enables shifting to AVX-512 more easily, is the “VL” (vector length) extensions which allow AVX-512 instructions to behave like SSE or AVX/AVX2 instructions when that suits us. This is a clever and powerful addition to enable its adoption in a wider assortment of software more quickly. The VL extensions mean that programmers (and compilers) do not need to shift immediately from 256-bits (AVX/AVX2) to 512-bits to use the new bit/byte/word manipulations. This transitional benefit is useful not only for an interim, but also for applications which find 256-bits more natural (perhaps a small, but important, subset of problems).

The “future Xeon processor” extensions for AVX-512 were first announced in mid-2014. Intel has done the right things to make software ready for it (for instance we can google for “gcc SKX” – where SKX is widely speculated to be a contraction of “Skylake” and “Xeon”).  For several years now, the gcc, Intel, Microsoft, clang and ispc compilers have supported these instructions. Also, some open source software such as embree and mkl-dnn include support. We can create programs today that use these new instructions, and run them easily using Intel’s Software Development Emulator (SDE). Finally, after years of “leaking via software patches,” in May Intel officially announced that AVX-512 will be in the highly anticipated Skylake/Purley platform as the first processor in the new Intel Xeon Processor Scalable Family (successor to the Xeon E5 and E7 product lines).

Vectorizing more than just Floating Point
The net effect: when Intel Xeon processors support AVX-512 we will have exciting new capabilities that extend the obvious use of AVX-512 for HPC and AI/ML/HPDA workloads to offer flexibility perfect for vectorization needs that include integer and bit-oriented data types as well as the strong floating-point support that first appeared with AVX-512 on Intel Xeon Phi processors. While most HPC and AI/ML/HPDA workloads lean on floating point today, there is plenty of reason to believe that algorithm innovations can benefit from integer and bit-oriented data types when hardware acceleration is available. This makes these AVX-512 developments very exciting!

AVX introduced some bit manipulation and byte/word capabilities. AVX-512 expands greatly on these capabilities. It’s the “VL” (vector length) extensions that ties SSE/AVX/AVX2/AVX_512 together in a clever way that makes these new capabilities easier to adopt, for programmers, tools and compilers.

For those exploring new algorithms for AI, including machine learning and HPDA workloads, the inclusion for bit, byte, and word operations alongside floating point opens up exciting new possibilities. The vector length extensions make them immediately useful to SSE/AVX/AVX2 programmers without forcing an immediate shift to 512-bits.

Three Highlights in the extended AVX-512
Intel documentation and the CPUID enabling bits divide up the “SKX” extensions to into AVX512DQ, AVX512BW, and AVX512VL.

  • AVX512DQ is vector support for Double-word and Quad-word integers, also commonly thought of as int32/int and int64/long. In addition to integer arithmetic and bitwise operations, there are instructions for conversions to/from floating-point vectors. Masking is supported down to the byte level which offers amazing flexibility in using these instructions.
  • AVX512BW is vector support for Byte (half-words) and Words, also commonly thought of as char/int8 and short/int16. A rich set of instructions for integer arithmetic and bitwise operations are offered. Masking is supported down to the byte level with AVX512BW as well.
  • AVX512VL ups the ante enormously, by making almost all of the AVX512 instructions available as SSE and AVX instructions, but with a full 32 register capability (at least double the registers that SSE or AVX instructions have to offer). AVX512VL is not actually a set of new instructions. It is an orthogonal feature that applies to nearly all AVX-512 instructions (the exceptions make sense – a few AVX512F and AVX512DQ instructions with implicit 256 or 128 bit widths such as those explicitly working on 32×4 and 64×2 data).

The trend with vector instructions to grow to longer and longer lengths has not been without its disadvantages and difficulties for programmers. While longer vectors are often a great thing for many supercomputer applications, longer vector lengths are often more difficult to use all the time when handling compute problems that do not always have long vectors to process. The VL extensions to AVX-512 bring flexibility to Intel’s AVX-512 that broaden its applicability.

AVX-512 instructions offer a rich collection of operations but they have always operated on the 512-bit registers (ZMM). The downside of a 512-bit register is that it wastes bandwidth and power to use a 512-bit instructions and registers for 256 or 128-bit operations.  Well optimized code (such as that emitted by compilers, or experienced intrinsic or assembly programmers) would seemingly have a careful mix of SSE (128-bit SIMD) and AVX (256-bit SIMD). Doing this is clumsy at best, and complicated by a performance penalty when mixing SSE and AVX code (fortunately there is no performance penalty when mixing AVX and AVX-512 instructions).

The VL extension enables AVX-512 instructions to operate on XMM (128-bit) and YMM (256-bit) registers, and are not limited to just the full ZMM registers. This symmetry definitely is good news. AVX-512, with the VL extension, seems well set to be the programming option of choice for compilers and hand coders because it unifies so many capabilities together along with access to 32 vector registers regardless of their size (XMM, YMM or ZMM).

More AVX-512 features after Skylake?
There is further evidence in the open source enabling work of additional instructions coming after Skylake. Intel has placed documentation of these into its Software Developer Guides, and helped add support to open source projects. Again, this is all good news for software developer because it means software tools do not need to lag the hardware. The four categories of instructions that are documented by Intel thus far, and are not enabled by compiler options for “KNL” (Intel Xeon Phi processors) or “SKX” (Skylake Xeon processors) are:

  • AVX512IFMA: 2 instructions for high/low result of Fused Multiply-Add for 2/4/8-element vectors of 52-bit integers stored in 64-bit fields of 128/256/512-bit vectors.
  • AVX512VBMI: Byte-level vector permute (on 128/256/512/1024-bit vectors) and a select+pack instruction — 4 instructions (with multiple argument types)
  • AVX512_4VNNIW: Vector instructions for deep learning enhanced word variable precision.
  • AVX512_4FMAPS: Vector instructions for deep learning floating-point single precision.

Speculation, supported by open source documentation, says that the first two will appear in a Xeon processor after Skylake, and the latter two will appear in a future Intel Xeon Phi processor (Knights Mill is commonly suggested).

Summary
Regardless of how perfect my speculations are on timing, it is clear that Intel is investing heavily in their expansion of vector capabilities to much more than floating-point operations.  This gives a much-expanded capability for algorithms to be developed with a much wider variety of arithmetic and bitwise operations than floating-point alone can offer.  Who will take advantage of these remains to be seen – but ML/AI and cryptographic programmers seem to be obvious candidates.

With Skylake-architecture based Intel Xeon processors coming soon, it is a great time for programmers to take a closer look.  The instructions are already well supported in tools, and the Intel Software Development Emulator (SDE) makes it easy to run the instructions today.

For More Information
I recommend the following sites for more detailed information:

  • Intel’s online guide to AVX-512 instructions as they are best accessed in C/C++ (intrinsics) has a detailed guide (click on instructions to expand) for AVX-512 instructions.
  • The Intel Software Development Emulator (SDE) allows us to run programs using these Intel AVX-512 instructions on our current x86 systems. The SDE runs code via emulation, which is accurate but slower than on hardware with support for the instructions built-in.
  • Intel documentation is massive, a complete list “Intel® 64 and IA-32 Architectures Software Developer Manuals” covers everything, the specific documents to learn about AVX-512VL are the “Intel® 64 and IA-32 architectures software developer’s manual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4” and “Intel® architecture instruction set extensions programming reference.” Normally, information in the latter document migrates to the former when support appears in a shipping product – so eventually everything about VL will be in the first document. I did not link the specific documents because their links change. We can find them on the main documentation page and click there to get the latest documents. I scroll through them by searching for “AVX512VL” in my PDF viewer and moving from match to match.

About the Author
James Reinders likes fast computers and the software tools to make them speedy. Last year, James concluded a 10,001 day career at Intel where he contributed to projects including the world’s first TeraFLOPS supercomputer (ASCI Red), compilers and architecture work for a number of Intel processors and parallel systems. James is the founding editor of The Parallel Universe magazine and has been the driving force behind books on VTune (2005), TBB (2007), Structured Parallel Programming (2012), Intel Xeon Phi coprocessor programming (2013), Multithreading for Visual Effects (2014), High Performance Parallelism Pearls Volume One (2014) and Volume Two (2015), and Intel Xeon Phi processor (2016). James resides in Oregon, where he enjoys both gardening and HPC and HPDA consulting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GigaIO Gets $14.7M in Series B Funding to Expand Its Composable Fabric Technology to Customers

September 16, 2021

Just before the COVID-19 pandemic began in March 2020, GigaIO introduced its Universal Composable Fabric technology, which allows enterprises to bring together any HPC and AI resources and integrate them with networking, Read more…

What’s New in HPC Research: Solar Power, ExaWorks, Optane & More

September 16, 2021

In this regular feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

AWS Solution Channel

Supporting Climate Model Simulations to Accelerate Climate Science

The Amazon Sustainability Data Initiative (ASDI), AWS is donating cloud resources, technical support, and access to scalable infrastructure and fast networking providing high performance computing (HPC) solutions to support simulations of near-term climate using the National Center for Atmospheric Research (NCAR) Community Earth System Model Version 2 (CESM2) and its Whole Atmosphere Community Climate Model (WACCM). Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit technologies), the quantum computing landscape is transforming Read more…

Cerebras Brings Its Wafer-Scale Engine AI System to the Cloud

September 16, 2021

Five months ago, when Cerebras Systems debuted its second-generation wafer-scale silicon system (CS-2), co-founder and CEO Andrew Feldman hinted of the company’s coming cloud plans, and now those plans have come to fruition. Today, Cerebras and Cirrascale Cloud Services are launching... Read more…

AI Hardware Summit: Panel on Memory Looks Forward

September 15, 2021

What will system memory look like in five years? Good question. While Monday's panel, Designing AI Super-Chips at the Speed of Memory, at the AI Hardware Summit, tackled several topics, the panelists also took a brief glimpse into the future. Unlike compute, storage and networking, which... Read more…

ECMWF Opens Bologna Datacenter in Preparation for Atos Supercomputer

September 14, 2021

In January 2020, the European Centre for Medium-Range Weather Forecasts (ECMWF) – a juggernaut in the weather forecasting scene – signed a four-year, $89-million contract with European tech firm Atos to quintuple its supercomputing capacity. With the deal approaching the two-year mark, ECMWF... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

Amazon, NCAR, SilverLining Team for Unprecedented Cloud Climate Simulations

September 10, 2021

Earth’s climate is, to put it mildly, not in a good place. In the wake of a damning report from the Intergovernmental Panel on Climate Change (IPCC), scientis Read more…

After Roadblocks and Renewals, EuroHPC Targets a Bigger, Quantum Future

September 9, 2021

The EuroHPC Joint Undertaking (JU) was formalized in 2018, beginning a new era of European supercomputing that began to bear fruit this year with the launch of several of the first EuroHPC systems. The undertaking, however, has not been without its speed bumps, and the Union faces an uphill... Read more…

How Argonne Is Preparing for Exascale in 2022

September 8, 2021

Additional details came to light on Argonne National Laboratory’s preparation for the 2022 Aurora exascale-class supercomputer, during the HPC User Forum, held virtually this week on account of pandemic. Exascale Computing Project director Doug Kothe reviewed some of the 'early exascale hardware' at Argonne, Oak Ridge and NERSC (Perlmutter), while Ti Leggett, Deputy Project Director & Deputy Director... Read more…

IBM Introduces its First Power10-based Server, the Power E1080; Targets Hybrid Cloud

September 8, 2021

IBM today introduced the Power E1080 server, its first system powered by a Power10 IBM microprocessor. The new system reinforces IBM’s emphasis on hybrid cloud markets and the new chip beefs up its inference capabilities. IBM – like other CPU makers – is hoping to make inferencing a core capability... Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. “We’ve been scaling our neural network training compute dramatically over the last few years,” said Milan Kovac, Tesla’s director of autopilot engineering. Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

Leading Solution Providers

Contributors

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire