Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

By James Reinders

June 29, 2017

In this contributed feature, James Reinders explores how AVX-512 vector processing will add flexibility to Intel’s forthcoming “Scalable” processors.

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms based on floating point (FP) numbers. Algorithms can definitely benefit from basing their mathematics on bits and integers (bytes, words) if we could just accelerate them too. FPGAs can do this, but the hardware and software costs remain very high. GPUs aren’t designed to operate on non-FP data. Intel AVX introduced some support, and now Intel AVX-512 is bringing a great deal of flexibility to processors. I will share why I’m convinced that the “AVX512VL” capability in particular is a hidden gem that will let AVX-512 be much more useful for compilers and developers alike.

Fortunately for software developers, Intel has done a poor job keeping the “secret” that AVX-512 is coming to Intel’s recently announced Xeon Scalable processor line very soon. Amazon Web Services has publically touted AVX-512 on Skylake as coming soon!

It is timely to examine the new AVX-512 capabilities and their ability to impact beyond the more regular HPC needs for floating point only workloads. The hidden gem in all this, which enables shifting to AVX-512 more easily, is the “VL” (vector length) extensions which allow AVX-512 instructions to behave like SSE or AVX/AVX2 instructions when that suits us. This is a clever and powerful addition to enable its adoption in a wider assortment of software more quickly. The VL extensions mean that programmers (and compilers) do not need to shift immediately from 256-bits (AVX/AVX2) to 512-bits to use the new bit/byte/word manipulations. This transitional benefit is useful not only for an interim, but also for applications which find 256-bits more natural (perhaps a small, but important, subset of problems).

The “future Xeon processor” extensions for AVX-512 were first announced in mid-2014. Intel has done the right things to make software ready for it (for instance we can google for “gcc SKX” – where SKX is widely speculated to be a contraction of “Skylake” and “Xeon”).  For several years now, the gcc, Intel, Microsoft, clang and ispc compilers have supported these instructions. Also, some open source software such as embree and mkl-dnn include support. We can create programs today that use these new instructions, and run them easily using Intel’s Software Development Emulator (SDE). Finally, after years of “leaking via software patches,” in May Intel officially announced that AVX-512 will be in the highly anticipated Skylake/Purley platform as the first processor in the new Intel Xeon Processor Scalable Family (successor to the Xeon E5 and E7 product lines).

Vectorizing more than just Floating Point
The net effect: when Intel Xeon processors support AVX-512 we will have exciting new capabilities that extend the obvious use of AVX-512 for HPC and AI/ML/HPDA workloads to offer flexibility perfect for vectorization needs that include integer and bit-oriented data types as well as the strong floating-point support that first appeared with AVX-512 on Intel Xeon Phi processors. While most HPC and AI/ML/HPDA workloads lean on floating point today, there is plenty of reason to believe that algorithm innovations can benefit from integer and bit-oriented data types when hardware acceleration is available. This makes these AVX-512 developments very exciting!

AVX introduced some bit manipulation and byte/word capabilities. AVX-512 expands greatly on these capabilities. It’s the “VL” (vector length) extensions that ties SSE/AVX/AVX2/AVX_512 together in a clever way that makes these new capabilities easier to adopt, for programmers, tools and compilers.

For those exploring new algorithms for AI, including machine learning and HPDA workloads, the inclusion for bit, byte, and word operations alongside floating point opens up exciting new possibilities. The vector length extensions make them immediately useful to SSE/AVX/AVX2 programmers without forcing an immediate shift to 512-bits.

Three Highlights in the extended AVX-512
Intel documentation and the CPUID enabling bits divide up the “SKX” extensions to into AVX512DQ, AVX512BW, and AVX512VL.

  • AVX512DQ is vector support for Double-word and Quad-word integers, also commonly thought of as int32/int and int64/long. In addition to integer arithmetic and bitwise operations, there are instructions for conversions to/from floating-point vectors. Masking is supported down to the byte level which offers amazing flexibility in using these instructions.
  • AVX512BW is vector support for Byte (half-words) and Words, also commonly thought of as char/int8 and short/int16. A rich set of instructions for integer arithmetic and bitwise operations are offered. Masking is supported down to the byte level with AVX512BW as well.
  • AVX512VL ups the ante enormously, by making almost all of the AVX512 instructions available as SSE and AVX instructions, but with a full 32 register capability (at least double the registers that SSE or AVX instructions have to offer). AVX512VL is not actually a set of new instructions. It is an orthogonal feature that applies to nearly all AVX-512 instructions (the exceptions make sense – a few AVX512F and AVX512DQ instructions with implicit 256 or 128 bit widths such as those explicitly working on 32×4 and 64×2 data).

The trend with vector instructions to grow to longer and longer lengths has not been without its disadvantages and difficulties for programmers. While longer vectors are often a great thing for many supercomputer applications, longer vector lengths are often more difficult to use all the time when handling compute problems that do not always have long vectors to process. The VL extensions to AVX-512 bring flexibility to Intel’s AVX-512 that broaden its applicability.

AVX-512 instructions offer a rich collection of operations but they have always operated on the 512-bit registers (ZMM). The downside of a 512-bit register is that it wastes bandwidth and power to use a 512-bit instructions and registers for 256 or 128-bit operations.  Well optimized code (such as that emitted by compilers, or experienced intrinsic or assembly programmers) would seemingly have a careful mix of SSE (128-bit SIMD) and AVX (256-bit SIMD). Doing this is clumsy at best, and complicated by a performance penalty when mixing SSE and AVX code (fortunately there is no performance penalty when mixing AVX and AVX-512 instructions).

The VL extension enables AVX-512 instructions to operate on XMM (128-bit) and YMM (256-bit) registers, and are not limited to just the full ZMM registers. This symmetry definitely is good news. AVX-512, with the VL extension, seems well set to be the programming option of choice for compilers and hand coders because it unifies so many capabilities together along with access to 32 vector registers regardless of their size (XMM, YMM or ZMM).

More AVX-512 features after Skylake?
There is further evidence in the open source enabling work of additional instructions coming after Skylake. Intel has placed documentation of these into its Software Developer Guides, and helped add support to open source projects. Again, this is all good news for software developer because it means software tools do not need to lag the hardware. The four categories of instructions that are documented by Intel thus far, and are not enabled by compiler options for “KNL” (Intel Xeon Phi processors) or “SKX” (Skylake Xeon processors) are:

  • AVX512IFMA: 2 instructions for high/low result of Fused Multiply-Add for 2/4/8-element vectors of 52-bit integers stored in 64-bit fields of 128/256/512-bit vectors.
  • AVX512VBMI: Byte-level vector permute (on 128/256/512/1024-bit vectors) and a select+pack instruction — 4 instructions (with multiple argument types)
  • AVX512_4VNNIW: Vector instructions for deep learning enhanced word variable precision.
  • AVX512_4FMAPS: Vector instructions for deep learning floating-point single precision.

Speculation, supported by open source documentation, says that the first two will appear in a Xeon processor after Skylake, and the latter two will appear in a future Intel Xeon Phi processor (Knights Mill is commonly suggested).

Summary
Regardless of how perfect my speculations are on timing, it is clear that Intel is investing heavily in their expansion of vector capabilities to much more than floating-point operations.  This gives a much-expanded capability for algorithms to be developed with a much wider variety of arithmetic and bitwise operations than floating-point alone can offer.  Who will take advantage of these remains to be seen – but ML/AI and cryptographic programmers seem to be obvious candidates.

With Skylake-architecture based Intel Xeon processors coming soon, it is a great time for programmers to take a closer look.  The instructions are already well supported in tools, and the Intel Software Development Emulator (SDE) makes it easy to run the instructions today.

For More Information
I recommend the following sites for more detailed information:

  • Intel’s online guide to AVX-512 instructions as they are best accessed in C/C++ (intrinsics) has a detailed guide (click on instructions to expand) for AVX-512 instructions.
  • The Intel Software Development Emulator (SDE) allows us to run programs using these Intel AVX-512 instructions on our current x86 systems. The SDE runs code via emulation, which is accurate but slower than on hardware with support for the instructions built-in.
  • Intel documentation is massive, a complete list “Intel® 64 and IA-32 Architectures Software Developer Manuals” covers everything, the specific documents to learn about AVX-512VL are the “Intel® 64 and IA-32 architectures software developer’s manual combined volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4” and “Intel® architecture instruction set extensions programming reference.” Normally, information in the latter document migrates to the former when support appears in a shipping product – so eventually everything about VL will be in the first document. I did not link the specific documents because their links change. We can find them on the main documentation page and click there to get the latest documents. I scroll through them by searching for “AVX512VL” in my PDF viewer and moving from match to match.

About the Author
James Reinders likes fast computers and the software tools to make them speedy. Last year, James concluded a 10,001 day career at Intel where he contributed to projects including the world’s first TeraFLOPS supercomputer (ASCI Red), compilers and architecture work for a number of Intel processors and parallel systems. James is the founding editor of The Parallel Universe magazine and has been the driving force behind books on VTune (2005), TBB (2007), Structured Parallel Programming (2012), Intel Xeon Phi coprocessor programming (2013), Multithreading for Visual Effects (2014), High Performance Parallelism Pearls Volume One (2014) and Volume Two (2015), and Intel Xeon Phi processor (2016). James resides in Oregon, where he enjoys both gardening and HPC and HPDA consulting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with Read more…

By Arno Kolster

Google Cloud Makes Good on Promise to Add Nvidia P100 GPUs

September 21, 2017

Google has taken down the notice on its cloud platform website that says Nvidia Tesla P100s are “coming soon.” That's because the search giant has announced the beta launch of the high-end P100 Nvidia Tesla GPUs on t Read more…

By George Leopold

Cray Wins $48M Supercomputer Contract from KISTI

September 21, 2017

It was a good day for Cray which won a $48 million contract from the Korea Institute of Science and Technology Information (KISTI) for a 128-rack CS500 cluster supercomputer. The new system, equipped with Intel Xeon Scal Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Adolfy Hoisie to Lead Brookhaven’s Computing for National Security Effort

September 21, 2017

Brookhaven National Laboratory announced today that Adolfy Hoisie will chair its newly formed Computing for National Security department, which is part of Brookhaven’s new Computational Science Initiative (CSI). Read more…

By John Russell

Machine Learning at HPC User Forum: Drilling into Specific Use Cases

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art o Read more…

By Arno Kolster

Stanford University and UberCloud Achieve Breakthrough in Living Heart Simulations

September 21, 2017

Cardiac arrhythmia can be an undesirable and potentially lethal side effect of drugs. During this condition, the electrical activity of the heart turns chaotic, Read more…

By Wolfgang Gentzsch, UberCloud, and Francisco Sahli, Stanford University

PNNL’s Center for Advanced Tech Evaluation Seeks Wider HPC Community Ties

September 21, 2017

Two years ago the Department of Energy established the Center for Advanced Technology Evaluation (CENATE) at Pacific Northwest National Laboratory (PNNL). CENAT Read more…

By John Russell

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National Laboratory. Kothe is a 32-year veteran of DOE’s National Laboratory System. Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conference in Barcelona. In conjunction with her presentation, Yelick agreed to a short Q&A discussion with HPCwire. Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This