Machine Learning at HPC User Forum: Drilling into Specific Use Cases

By Arno Kolster

September 22, 2017

The 66th HPC User Forum held September 5-7, in Milwaukee, Wisconsin, at the elegant and historic Pfister Hotel, highlighting the 1893 Victorian décor and art of “The Grand Hotel Of The West,” contrasted nicely with presentations on the latest trends in modern computing – deep learning, machine learning and AI.

Over the course of two days of presentations, a couple common themes became obvious: First, that machine and deep learning are focused currently on specific rather than general use cases and second, that ML and DL need to be part of an integrated workflow to be effective.

This was exemplified by Dr. Maarten Sierhuis from Nissan Research Facility Silicon Valley with his presentation “Technologies for Making Self-Driving Vehicles the Norm.” One of the most engaging talks, Dr. Sierhuis’s multi-media presentation on the triumphs and challenges facing Nissan while developing its self-driving vehicle program showcased that machine and deep learning “drives” the autonomous vehicle revolution.

The challenge that Nissan and other deep learning practitioners face is that current deep learning algorithms are programmed to learn to do one thing extremely well – the specific use case: image recognition of stop signs for example. Once an algorithm learns to recognize stop signs, the same amount of discrete learning must apply for every other road sign a vehicle may encounter. To create a general-purpose “road sign learning algorithm”, not only do you need a massive amount of image data (in the tens of millions of varied images), but also the compute to power the learning effort.

Dr. Weng-Keen Wong from the NSF echoed much the same distinction between the specific and general case algorithm during his talk “Research in Deep Learning: A Perspective From NSF” and was also mentioned by Nvidia’s Dale Southard during the disruptive technology panel. Arno Kolster from Providentia Worldwide in his presentation “Machine and Deep Learning: Practical Deployments and Best Practices for the Next Two Years” claimed as well that general purpose learning algorithms are obviously the way to go, but are still some time out.

Nissans’s Dr. Sierhuis went on to highlight some challenges computers still face which human drivers take for granted. For example, what does an autonomous vehicle do when a road crew is blocking the road in front of it? As a human driver, we’d simply move into the opposite lane to “just go around”, but to algorithms, this breaks all the rules: Crossing a double line, checking the opposite lane for oncoming traffic, shoulder checking, ensuring no crossing pedestrians, etc. All need real-time re-programming for the encountering vehicle and other vehicles that arriving at the obstacle.

Nissan proposes an “FAA-like” control system, but the viability of such a system remains to be seen. Certainly, autonomous technologies are integrating slowly into new cars to augment human drivers but a complete self-driving vehicle won’t appear in the marketplace overnight -cars will continue to function in a hybrid mode for some time. Rest assured, many of today’s young folks likely will never learn how to drive (or ask their parents to borrow the car on Saturday night).

This algorithmic specificity spotlights the difficulty of integrating deep learning into an actual production workflow.

Tim Barr’s (Cray) “Perspectives on HPC-Enabled AI” showed how Cray’s HPC technologies can be leveraged for Machine and Deep Learning for vision, speech and language. Stating that it all starts with analytics, Mr. Barr illustrated how industries such as Daimler improve manufacturing processes and products by leveraging deep learning to curtail vehicle noise and reduce vibration in its newest vehicles. Nikunj Oza from NASA Ames gave examples of machine learning behind aviation safety and astronaut health maintenance in “NASA Perspective on Deep Learning.” Dr. Oza’s background in analytics brought a fresh perspective to the proceedings and showcased that machine learning from history has earned a real place alongside modeling for industrial best practices.

In the simulation space, a fascinating talk from the LLNL HPC4Mfg program was William Elmer’s (LLNL) discussion of Proctor & Gamble’s “Faster Turnaround for Multiscale Models of Paper Fiber Products.” Simulating various paper product textures and fibers greatly reduce the amount of energy from drying and compaction. Likewise, Shiloh Industries’ Hal Gerber described “High Pressure Casting for Structural Requirements and The Implications on Simulation.” Shiloh’s team leverages HPC for changing vehicle structure — especially in creating lighter components with composites like carbon fiber and mixed materials.

It’s clear from the discussion that machine learning and AI are set to be first class citizens alongside traditional simulation within the HPC community in short order. While still unproven and with a wide variety of new software implementations, HP Labs presented a first-of-its-kind analysis of ML benchmarking on HPC Platforms. Hewlett Packard Labs’ Natalia Vassilieva’s “Characterization and Benchmarking of Deep Learning” showcased the “Book of Recipes” HP Labs is developing with various hardware and software configurations. Fresh off their integration of SGI technology into their technology stack, the talk not only highlighted the newer software platforms which the learning systems leverage, but demonstrated that HPE’s portfolio of systems and experience in both HPC and hyper scale environments is impressive indeed.

Graham Anthony, CFO of BioVista spoke on the “Pursuit of Sustainable Healthcare Through Personalized Medicine With HPC.” Mr. Anthony was very passionate about the work BioVista is doing with HPE and how HPC and deep learning change the costs of healthcare by increased precision in treatment through deriving better insights from data. BioVista takes insight from deep learning and feeds that into simulations for better treatments – a true illustration that learning is here to stay, and works hand in hand with business process flows for traditional HPC.

In his talk entitled “Charliecloud: Containers are Good for More Than Serving Cat Pictures?” Reid Priedhorsky from LANL covered a wide range of topics including software stacks, design philosophy and demoed Charliecloud which enables execution of docker containers on supercomputers.

The tongue-in-cheek title about cat pictures being synonymous with deep learning image recognition is not by accident. Stand-alone image recognition is really cool, but as expounded upon above, the true benefit from deep learning is having an integrated workflow where data sources are ingested by a general purpose deep learning platform with outcomes that benefit business, industry and academia.

From the talks, it is also clear that Machine Learning, Deep Learning and AI are presently fueled more by industry than by academia. This could be due to strategic and competitive business drivers as well as the sheer amount of data that companies like Facebook, Baidu and Google have available to them driving AI research and deep learning-backed products. HPC might not be needed to push these disciplines forward and is likely why we see this trend becoming more prevalent in everyday news.

There was obvious concern from the audience about a future where machines rule the world. Ethical questions of companies knowingly replacing workers with robots or AI came up in a very lively discussion. Some argued that there is a place for both humans and AI — quieting the fear that tens of thousands of people would be replaced by algorithms and robots. Others see a more dismal human future with evil and malevolent robots taking control and little left for humans to do. These are, of course, difficult questions to answer and further debates will engage and entertain everyone as we keep moving toward an uncertain, technical future.

On a lighter note, Wednesday evening’s dinner featured a local volunteer docent, Dave Fehlauer, giving an enjoyable, informative talk on Captain Frederick Pabst: his family, his world and his well-known Milwaukee staple, The Pabst Brewing Company.

By all accounts, this was one of the most enjoyed HPC User Forums meetings. With a coherent theme and a dynamic range of presentations, the Forum kept everyone’s interest and showcased the realm of possibilities within this encouraging trend of computing, both from industry and academic research perspectives.

The next domestic HPC User Forum will be held April 16-18, 2018 at the Loews Ventana Canyon in Tucson, Arizona. See http://hpcuserforum.com for further information.

About the Author

Arno Kolster is Principal & Co-Founder of Providentia Worldwide, a technical consulting firm. Arno focuses on bridging enterprise and HPC architectures and was co-winner of IDC’s HPC Innovation Award with his partner Ryan Quick in 2012 and 2014. He was recipient of the Alan El Faye HPC Inspiration Award in 2016. Arno can be reached at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, some of the apps, like SWIFT and OpenFOAM, really pushed the st Read more…

By Dan Olds

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This