As Exascale Frontier Opens, Science Application Developers Share Pioneering Strategies

By Jonathan Hines

December 19, 2017

In November 2015, three colleagues representing the US Department of Energy (DOE) Office of Science’s three major supercomputing facilities struck up a conversation with a science and technology book publisher about a project to prepare a publication focusing on the future of application development in anticipation of pre-exascale and exascale supercomputers and the challenges posed by such systems.

Two years later, the fruits of that discussion became tangible in the form of a new book, which debuted at SC17. Exascale Scientific Applications: Scalability and Performance Portability captures programming strategies being used by leading experts across a wide spectrum of scientific domains to prepare for future high-performance computing (HPC) resources. The book’s initial collaborators and eventual coeditors are Tjerk Straatsma, Scientific Computing Group leader at the Oak Ridge Leadership Computing Facility (OLCF); Katerina Antypas, Data Department Head at the National Energy Research Scientific Computing Center (NERSC); and Timothy Williams, Deputy Director of Science at the Argonne Leadership Computing Facility (ALCF).

Twenty-four teams, including many currently participating in early science programs at the OLCF, ALCF, and NERSC, contributed chapters on preparing codes for next-generation supercomputers, in which they summarized approaches to make applications performance portable and to develop applications that align with trends in supercomputing technology and architectures.

In this interview, Straatsma, Antypas, and Williams discuss the significance of proactive application development and the benefits this work portends for the scientific community.

Tjerk Straatsma

How did this book come to be written?

Tjerk Straatsma: When we proposed writing the book, the intent was to provide application developers with an opportunity to share what they are doing today to take advantage of pre-exascale machines. These are the people doing the actual porting and optimization work. Through their examples, we hope that others will be inspired and get ideas about how to approach similar problems for their applications to do more and better science.

For quite some time, the three DOE ASCR [Advanced Scientific Computing Research] supercomputing facilities have been the leaders when it comes to working on performance portability for science applications. For our users, it’s very important that they can move from one system to another and continue their research at different facilities. That’s why DOE is very much interested in the whole aspect of portability—not just architectural portability but also performance portability. You want high performance on more than just a single system.

Katerina Antypas

Katerina Antypas: As the three of us discussed the different application readiness programs within our centers, it was clear that despite architectural differences between the systems at each center, the strategies to optimize applications for pre-exascale systems were quite similar. Sure, if a system has a GPU, a different semantic might be needed, but the processes of finding hot spots in codes, increasing data locality, and improving thread scalability were the same. And in fact, teams from NERSC, OLCF, and ALCF talked regularly about best practices and lessons learned preparing applications. We thought these lessons learned and case studies should be shared more broadly with the rest of the scientific computing community.

Timothy Williams: Nothing instructs the developer of scientific applications more clearly than an example. Capturing the efforts of our book’s authors as examples was an idea that resonated with us. Measuring and understanding the performance of applications at large scale is key for those developers, so we were glad we could include discussions about some of the tools that make that possible across multiple system architectures. Libraries supporting functions common to many applications, such as linear algebra, are an ideal approach to performance portability, so it made good sense to us to include this as a topic as well.

Tim Williams

Why is it important for these programming strategies to be shared now?

Straatsma: It’s important because DOE’s newest set of machines is starting to arrive. In 2016, NERSC delivered Cori, which comprises 9,688 Intel Xeon Phi Knights Landing processors, each with 68 cores. As we speak, the OLCF is building Summit—which will be around eight times more powerful than our current system, Titan, when it debuts in 2018. The ALCF is working to get its first exascale machine, Aurora, and the OLCF and NERSC are already working on the machines to follow their newest systems, at least one of which is likely to be an exascale machine.

It takes a long time to prepare codes for these new machines because they are becoming more and more complex. Hierarchies of processing elements, memory space, and communication networks are becoming more complex. Effectively using these resources requires significant effort porting applications. If you do that in a way that makes them portable between current machines, there’s a better chance that they will also be portable to future machines—even if you don’t know exactly what those systems will look like.

This is what this book is all about: providing a set of practical approaches that are currently being used by application development teams with the goal of getting applications to run effectively on future-generation architectures.

Antypas: There are three key technologies that applications need to take advantage of to achieve good performance on exascale systems: longer vector units, high bandwidth memory, and many low-powered cores. Regardless of vendor or specific architecture, future exascale systems will all have these features. The pre-exascale systems being deployed today—Cori at NERSC, Theta at ALCF, and Summit at OLCF—have early instances of exascale technologies that scientists can use to optimize their applications for the coming exascale architectures. Preparing applications for these changes now means better performing codes today and a smoother transition to exascale systems tomorrow.

Williams: Exascale computing is coming to the US in an accelerated timeframe—by 2021. This makes the work on applications, tools, and libraries documented in this book all the more relevant. Today is also a time of extraordinary innovation in both hardware and software technologies. Developing applications that are up to today’s state of the art, and well-positioned to adapt to those new technologies, is effort well spent.

What other major challenges are science and engineering application developers grappling with?

Straatsma: The biggest challenge is expressing parallelism across millions and millions—if not billions—of compute elements. That’s an algorithmic challenge. Then you have the hardware challenge, mapping those algorithms on to the specific hardware that you are targeting. Whether you have NVIDIA GPUs as accelerators together with IBM Power CPUs like on Summit or you’re looking at NERSC’s Cori system with its Intel Knights Landing processors, the basic story is the same: Taking the parallelism you’ve expressed and mapping it on to that hardware.

It’s a tall order, but, if done right, there is an enormous payoff because things that are being developed for these large pre-exascale machines tend to also lead to more efficient use of traditional architectures. In that sense, we’re at the forefront of the hardware with these machines, but we’re also at the forefront of the software. The benefits trickle down to the wider community.

Antypas: Besides the challenges associated with expressing on-node parallelism and improving data locality, scientists are grappling with the huge influx of data from experiments and observational facilities such as light sources, telescopes, sensors, and detectors, and how to incorporate data from these experiments into models and simulations. In the not too distant past, workflows started and ended within a supercomputing facility. Now, many user workflows start from outside of a computing facility and end with users needing to share data with a large collaboration. Data transfer, management, search, analysis, and curation have become large challenges for users.

Williams: Whether you view it as a challenge or an opportunity is a matter of perspective, but those developers who are themselves computational scientists are now more tightly coupled to the work of experimentalists and theorists. They are increasingly codependent. For example, cosmological simulations inform observational scientists of specific signs to look for in sky surveys, given an assumed set of parameter values for theoretical models. Particle-collider event simulations inform detectors at the experiment about what to look for, and what to ignore, in the search for rare particles—before the experiment is run.

How is scientific application development, which has traditionally entailed modeling and simulation, being influenced by data-driven discovery and artificial intelligence?

Straatsma: Most of the applications that we have in our current application readiness programs at the DOE computing facilities use traditional modeling and simulation, but artificial intelligence, machine learning, and deep learning are rapidly affecting the way we do computational science. Because of growth in datasets, it’s now possible to use these big machines to analyze data to discover underlying models. This is the broad area of data analytics. In our book, one such project is using seismic data analysis to derive models that are being used to get a better understanding of the Earth’s crust and interior.

In a sense, it’s doing computational science from the opposite direction than what has traditionally been done. Instead of having a model and simulating that model to create a lot of data that you use to learn things from your system, you start with potentially massive datasets—experimental or observational—and use inference methods to derive models, networks, or other features of interest.

Antypas: Machine learning and deep learning have revolutionized many fields already and are increasingly being used by NERSC users to solve science challenges important to the mission of the Department of Energy’s Office of Science. As part of a requirements-gathering process with the user community, scientists from every field represented noted they were exploring new methods for data analysis, including machine learning. We also expect scientists will begin to incorporate the inference step of learning directly into simulations.

Williams: Computational scientists now increasingly employ data-driven and machine learning approaches to answer the same science and engineering questions addressed by simulation. Fundamental-principles–based simulation and machine learning have some similarities. They can both address problems where there is no good, high-level theory to explain phenomena. For example, behavior of materials at the nanoscale, where conventional theories don’t apply, can be understood either by simulating the materials atom-by-atom or by using machine learning approaches to generate reduced models that predict behavior.

In the foreword, the contributors to this book are referred to as “the pioneers who will explore the exascale frontier.” How will their work benefit the larger scientific community?

Straatsma: In multiple ways. The most obvious benefit is that we get a set of applications that run very well on very large machines. If these are applications used by broad scientific communities, many researchers will benefit from them. The second benefit is in finding methodologies that can be translated to other codes or other application domains and be used to make these applications run very well on these new architectures. A third benefit is that application developers get a lot of experience doing this kind of work, and based on that experience, we have better ideas on how to approach the process of application readiness and performance portability.

Williams: With each step forward in large-scale parallel computing, a cohort of young scientists comes along for the ride, engaged in these pioneering efforts. The scale of this computing, and the sophistication of the software techniques employed, will become routine for them going forward. This is really just a manifestation of the advance of science, which builds on successes and corrects itself to be consistent with what we learn.

After coediting this volume, are there any key lessons that you hope readers take from this work?

Straatsma: I hope that people who are wondering about HPC at the scale we’re talking about will get inspired to think about what these future resources could do for their science or think bigger than what they’re thinking now. To draw one example from the book, astrophysicists are developing techniques for exascale systems that are projected to enable simulation of supernova explosions that include significantly larger kinetic networks than can be used today, and these systems can do this faster and more accurately. That’s just one example of the many described in this publication of exascale-capable applications with the promise of enabling computational science with more accurate models and fewer approximations, leading to more reliable predictions.

Oak Ridge National Laboratory is supported by the US Department of Energy’s Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Jonathan Hines is a science writer at Oak Ridge National Laboratory.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This