US Leads but China Gains in NSF 2018 S&E Indicators Report

By John Russell

January 30, 2018

For now, the U.S. still enjoys a leadership position in science and engineering worldwide according to the Science and Engineering Indicators 2018 report issued this month by the National Science Board, the governing body for the National Science Foundation.

The U.S. invests the most in research and development (R&D), attracts the most venture capital, awards the most advanced degrees, provides the most business, financial, and information services, and is the largest producer in high-technology manufacturing sectors, according to the report. On the downside, China’s dramatic rise as a force in science continues to challenge U.S. preeminence. There’s also been a recent drop in the number of international students seeking graduate degrees in the U.S. “These students are a critical component of the U.S. workforce in these high demand fields,” says the report.

Issued every two years, the S&E Indicators report is painted with a broad brush that catches major trends but is slim on details for individual industries and science domains. Broadly, it’s a “scorecard” of U.S. S&E activities compared with the global community. The 2018 report again shows the U.S. leading in most categories, but NSB Chair Maria Zuber, struck a cautionary note on the results.

“This year’s report shows a trend that the U.S. still leads by many S&T measures, but that our lead is decreasing in certain areas that are important to our country. That trend raises concerns about impacts on our economy and workforce, and has implications for our national security. From gene editing to artificial intelligence, scientific advancements come with inherent risks. And it’s critical that we stay at the forefront of science to mitigate those risks,” said Zuber, who is also VP for Research at Massachusetts Institute of Technology.

NSC has created a web presentation that makes it easy to roam through the report. NSB selected 42 S&E indicators and presented material in eight chapters covering education, workforce, R&D, public attitudes towards science, IP/Innovation, and industry. Data is drawn from many sources covering varying time periods. A fast way to zip through the material is to simply click on the figures section and march through them.

Here are a few noteworthy report bullets:

  • Global R&D. The U.S. led the world in R&D expenditures at $496 billion (26 percent share of the global total), but China was a decisive second at 2 percent ($408 billion). China has grown R&D spending roughly 18 percent annually since 2000; its focus is primarily on development rather than basic or applied research. During the same time frame, U.S. R&D spending has grown by 4 percent.
  • Venture Capital. China is no slouch here either; VC spending rose in China from approximately $3 billion in 2013 to $34 billion in 2016, climbing from 5 percent to 27 percent of the global share, the fastest increase of any economy. The U.S. attracted “nearly $70 billion,” slightly more than half of the $130 billion VCs invested globally in 2016.
  • International Grad Students. The number of international students in the U.S. dropped between the fall of 2016 and the fall of 2017 with the largest declines in graduate level computer science (13 percent) and engineering (8 percent). That’s not surprising given the current political climate. “These students are a critical component of the U.S. workforce in these high demand fields,” according to the report.
  • Regional S&E Specialization. Invention is a good example. “Of the three leaders in U.S. Patent and Trademark Office patents, U.S. and EU inventions are concentrated in chemistry and health, including pharmaceuticals and biotechnology. Japan’s patents are primarily in semiconductors, telecommunications, optics, and materials and metallurgy. Information and communication technologies—including digital communications, semiconductors, telecommunications, and optics—are mainstays of South Korea and China.”

Like past efforts, the 2018 Science and Engineering Indicators report is a massive effort.

“NSF’s Science and Engineering Indicators is the highest-quality and most comprehensive source of information on how the U.S. scientific and engineering enterprise is performing domestically and internationally,” said NSF Director France Córdova. “The 2018 report presents a wealth of easily accessible, vital data. It provides insights into how science and engineering research and development are tied to economic and workforce development, as well as STEM education, in the U.S. and abroad.”

S&E workforce assessment is always an important part of the report and nowhere is the workforce challenge greater than in computer sciences. The Bureau of Labor Statistics has projected 23 percent growth from 2014 to 2024 in the computer systems design and related services industry – from 1,777,700 jobs in 2014 to 2,186,600 jobs in 2024.

Commenting on this year’s results, Steve Conway, senior VP, Research, Hyperion Research, noted that China has moved far ahead in graduating bachelor degree level students. In 2015, the report’s most recent year, China graduated 1.6 million students, compared with 742,000 in the U.S. and 780,000 in Europe’s top eight countries combined. But that’s misleading, according to Conway.

“Things looks different at the Ph.D. level, where China had a modest lead over the U.S., 34,000 to 25,000, but Europe’s top eight countries together produced 58,000 doctoral graduates. This is further evidence that Europe is as strong a contender in the exascale race as the U.S. and China, adding to the EuroHPC initiative’s recently announced plan to spend another 1 billion euros on exascale development by 2020,” said Conway. (see chart below)

Interestingly, the number of computer programmer positions is forecast to shrink by 8 percent over the 2014-2024 timeframe while computer and mathematical scientists positions will grow 14.9 percent according to BLS. Again, the Indicators report is a broad measure. Within HPC the mix of skills sought changes over time. Expertise in parallel programming, for example, is at a premium currently and likely to remain so for some time.

This year the NSB slightly revised its definition of technology-rich industries. Here are the new ones:

Knowledge- and technology-intensive (KTI) industries: Those industries that have a particularly strong link to science and technology. These industries are five service industries—financial, business, communications, education, and health care; five high-technology manufacturing industries—aerospace; pharmaceuticals; computers and office machinery; semiconductors and communications equipment; and measuring, medical, navigation, optical, and testing instruments; and five medium-high-technology industries—motor vehicles and parts, chemicals excluding pharmaceuticals, electrical machinery and appliances, machinery and equipment, and railroad and other transportation equipment.

Knowledge-intensive services industries: Those industries that incorporate science, engineering, and technology into their services or the delivery of their services, consisting of business, information, education, financial, and health care.

According to the report KTI industries produce roughly one-third of the world GDP. “America” leads in providing business, financial, and information services, accounting for 31percent of the global share, followed by the European Union (EU) at 21 percent. China is the third largest producer of these services at 17 percent and continues to grow at a far faster rate (19 percent annually) than the U.S. and other developed countries. The U.S. is the largest producer of high technology manufacturing (31 percent global share). This includes production of air and spacecraft, semiconductors, computers, pharmaceuticals, and measuring and control instruments. China is second at 24 percent, more than doubling its share over the last decade.

Amid all of the gut-wrenching of the international S&E scorekeeping it’s worth remembering that modern science is intensely collaborative and cuts across national borders. This is evident in scientific publishing. Among the major producers of S&E publications, the United Kingdom had the highest international collaboration rate (57 percent) in 2016, followed by France (55 percent), and Germany (51 percent). The U.S. followed with a 37 percent international collaboration rate, up 12 percent from 2006.

Overall, there are few dramatic changes noted but some accelerated trends in the 2018 S&E Indicators report. Fortunately NSB has made the report easy to peruse.

Link to report: https://www.nsf.gov/statistics/2018/nsb20181/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Bailey Hutchison Convention Center and much of the surrounding Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

SC 30th Anniversary Perennials 1988-2018

November 8, 2018

Many conferences try, fewer succeed. Thirty years ago, no one knew if the first SC would also be the last. Thirty years later, we know it’s the biggest annual Read more…

By Doug Black & Tiffany Trader

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This