Spring Meetings Underscore Quantum Computing’s Rise

By Alex R. Larzelere

May 17, 2018

Editor’s note: Senior Fellow, Council on Competitiveness, and HPCwire Policy Editor Alex Larzelere documents the rising attention on quantum computing with an overview of four recent meetings focusing on the technology and its implications. We note that another high-level meeting is taking place tomorrow (Friday, May 18) in Washington; the Subcommittee on Digital Commerce and Consumer Protection will hold a hearing at 9:15 a.m. ET to discuss the state of quantum computing, including the challenges and opportunities that come with its development and deployment.

The month of April 2018 saw four very important and interesting meetings to discuss the state of quantum computing technologies, their potential impacts, and the technology challenges ahead. These discussions happened in light of the recent announcement by China of a $10 billion investment to build a National Laboratory for Quantum Information Sciences that is planned to be open in 2020. Also, the discussions were in light of the Department of Energy’s (DOE) Fiscal Year 2019 (FY-19) budget request that includes a $105 million investment to conduct research in areas of quantum information sciences that include quantum computing and quantum sensor technology. The conversations involved a number of organizations and research activities being done by industry and government. The main message was that quantum computing has now passed the point of being just a “physicist’s dream” and is starting to address the hard challenges that make it an “engineer’s nightmare.”

As a reminder, what makes quantum computing a physicist’s dream is its ability to tap into the quantum mechanical behaviors of superposition, tunneling, and the sometime called spooky behavior known as entanglement. The first advocate of quantum computing was Richard Feynman, a physicist, who speculated that the best way to simulate quantum mechanical behaviors was to use a quantum computer. However, there are huge engineering challenges of doing that and a number of different approaches have been proposed that include quantum-annealing, gate-model, and trapped ion. The engineering challenges involve the need to cool some types of quantum computing circuits to near absolute zero (actually colder than space) and the challenges of achieving and maintaining quantum coherence. There is a need to develop approaches to deal with questions about quantum computing programming models and data handling. As the April meetings revealed, promises of the quantum computing dream are great, but the engineering nightmares are many.

The first April meeting was held by D-Wave on the 5th. This event was the annual briefing done by D-Wave in Washington DC for government and industry leaders about the progress they have made in the past year. The big news that started the meeting was the announcement that in early 2018 that D-Wave has started testing of its 4,000 qubit system that will use a difference interconnection topology. The testing of the annealing style quantum computing is being done on a ~500 qubit system and that they are now in the process of growing that smaller configuration to the full 4,000 qubit size, which should be available in approximately 18 months.

The meeting also discussed the research being done at Los Alamos National Laboratory (LANL) on the D-Wave 1,000 qubit quantum computer located there. They reported that through the lab’s Rapid Response program, the computer was being used for the development of applications ranging from machine learning, to NP-Hard optimization problems, to uncertainty quantification and other applications (project summaries are available HERE). However, despite the optimistic tone, the D-Wave International Business President, Bo Ewald, reminded the group that we are still in the very early days of quantum computing. He said the state of technology is similar to where electronic computing was in the 1940s and 1950s. This was a sentiment repeated in all the other April quantum computing events.

The next important quantum computing event was held at the Council on Competitiveness’ Advanced Computing Roundtable (ACR) on April 11th. This group of industry, academia, government, and national lab leaders meet on a semi-annual basis to discuss the status of advanced computing technologies and its impact on national competitiveness. During the meeting there were a number of presentations on quantum computing. The first was given by Jerry Chow of the IBM T.J. Watson Research Center. Jerry provided great background on the topic, talked about its exciting prospects, and the challenges. He made a very interesting point that maximizing the potential of quantum computing will require finding the right balance of controllability, connectivity and coherence. He went on to suggest ways we might measure quantum computing capability and the ongoing work of IBM in this area. Finally, Jerry suggested that there should be a role for a National Quantum Initiatives to spearhead research in this area.

The next presentation was made by Rene’ Copeland, the President of D-Wave Government Inc. Copeland recapped the discussions from the previous week’s workshop. He also provided a bit more context of how the D-Wave annealing approach compares with other quantum computing approaches being used by Google, IBM, Intel, Rigetti, Microsoft and IonQ. Copeland made the point that despite the potential limitations of the D-Wave annealing approach, the computer was available and already being used by researchers to easily resolve previously extremely difficult problems.

The next presentation at the ACR meeting was made by Bob Sorenson of Hyperion Research.  Sorenson talked about the new effort that Hyperion Research was undertaking in the area of quantum computing. He talked about how they would be taking a new approach that involves forming a panel of experts on activities in the U.S. and around the world. The Hyperion Research study will cover both the state of quantum computing technologies as well its use for modeling and simulation, artificial intelligence, machine learning, communications and other applications. During his presentation, Sorenson reported the result from their first survey and the overall impression he left was that there is a great deal of activity in the quantum computing space. However, he like the other presenters stressed that the technology is still very immature. Sorenson made the great point that while we may have a quantum equivalent to a transistor, we are still need to develop the quantum equivalents of networks, memory, and storage.

The final presentation at the Council’s ACR meeting was given by R. Paul Stimers of K&L Gates, a Washington, DC law firm. Stimers introduced the idea of building an industry coalition around quantum computing. This coalition would be used to create a unified business voice to promote U.S. leadership in all aspects of the technology. The main point of the coalition is to proactively deal with the challenges being presented by other countries. The coalition is expected to endorse the idea of a National Quantum Initiative to help ensure U.S. leadership by supporting the necessary R&D and use of the U.S. national laboratories to accelerate the deployment of the technology to address government and industry applications.

The next quantum computing discussions occurred on April 16th and 17th at the Hyperion Research HPC Users Forum that was held in Tucson, Ariz. While the previous quantum computing discussions took a U.S. centric perspective, the Hyperion Research presentations (available HERE) provided a much more global view. The presentations started with Bob Sorenson who again described the Hyperion Research quantum computing market research activities and the answers to the first survey they have conducted in this area. Based on the survey results it is clear that there is a lot of work happening in many organizations (both government and industry) and that the challenges are plentiful. Bob ended his presentation with the optimistic note that, “The systems we see now are not camera-ready, but they are critically important quantum algorithm research tools.”

The HPC User Forum then went on to a number of presentations on the topic. These included Xiaobo Zhu from the University of Science and Technology of China, Steve Reinheart of D-Wave, John Martinis of Google, Jim Held of Intel, Matthia Trover of Microsoft, TR Govindan of NASA and Blake Johnson of Rigetti. Each of the presenters provided their perspectives on the very exciting computing possibilities of quantum computing and realistic assessments of the challenges that must be overcome to realize that potential.  The Hyperion Research survey captured a number of those challenges that include:

  • Achieving and maintaining quantum coherence;
  • Qubit connectivity;
  • Error identification and correction;
  • Lack of quantum algorithms and programming models;
  • And many others.

However, despite these challenges, the presenters were very excited about the potential benefits and the opportunity to find innovative ways to overcome them.

The fourth quantum computing discussion in April occurred at the Department of Energy’s (DOE) Office of Science Advanced Scientific Computing Advisory Committee (ASCAC) meeting on the 18th. This meeting is held quarterly and provides an opportunity for the committee members and the public to understand what is happening in the Advanced Scientific Computing Research (ASCR) program. The meeting was kicked off by the DOE Under Secretary for Science Paul Dabbar who expressed his, Secretary Perry’s, and the White House’s excitement and support for the Department’s HPC activities. Most of Under Secretary’s remarks centered on exascale. However, he mentioned the recent FY-19 budget request of $105 million for quantum computing research at the fact that it was spread across all of the Office of Science programs. He explained that this was because the DOE appreciates that quantum computing is in its early days and that basic research is required everywhere from high energy physics to basic energy science to computer science.

During the ASCAC meeting, Joe Lykken of Fermilab made a presentation on Perspectives on Quantum Information Science (available HERE). The presentation was an interesting take on the opportunities and challenges of quantum computing from the perspective of a particle accelerator laboratory. Lykken explained the potential important role that could be played by superconducting microwave cavities to extend quantum coherence times. He went on to discuss the fact that Fermilab has been developing those cavities for its accelerators for decades and that there was good potential that this experience could be applicable to future quantum computing systems. He also explained the importance of quantum computing to Fermilab to help to decipher the mysteries of materials at their fundamental levels.

The month of April 2018 saw an amazing number of very important quantum computing meetings. The good thing about these meetings is that they provide some great examples of how quantum computing can be applied to solve previous unsolvable problems. However, despite that optimism there was also a very realistic understanding of the challenges that must be addressed. The discussions also made the impressive point about how industry and governments are willing to make significant commitments to developing useable quantum computing technologies. The number of different research activities and diversity of approaches is very impressive. There is no question – the quantum computing race is on!

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire