Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

By John Russell

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it has partnered with a Japanese QC consulting start-up, Sigma-i, to help prime the QC pump. Last week IBM, with Japan-based colleagues, reported advances in simulating lithium-oxide reactivity such that could help advance battery technology. But first, have you heard of Neven’s Law?

Coined for Hartmut Neven, director of the Google Quantum Artificial Intelligence lab – Neven’s Law, among other things, predicts QC will achieve quantum supremacy soon, perhaps 2019. A good article in Quanta Magazine and reprinted in Scientific American tells the story.

Here’s a brief excerpt:

“The doubly exponential rate at which, according to Neven, quantum computers are gaining on classical ones is a result of two exponential factors combined with each other. The first is that quantum computers have an intrinsic exponential advantage over classical ones: If a quantum circuit has four quantum bits, for example, it takes a classical circuit with 16 ordinary bits to achieve equivalent computational power. This would be true even if quantum technology never improved.

“The second exponential factor comes from the rapid improvement of quantum processors. Neven says that Google’s best quantum chips have recently been improving at an exponential rate. (This rapid improvement has been driven by a reduction in the error rate in the quantum circuits. Reducing the error rate has allowed the engineers to build larger quantum processors, Neven said.) If classical computers require exponentially more computational power to simulate quantum processors, and those quantum processors are growing exponentially more powerful with time, you end up with this doubly exponential relationship between quantum and classical machines.”

Apparently, the rule began as an in-house observation before Neven mentioned it in May at the Google Quantum Spring Symposium where he said that quantum computers are gaining computational power relative to classical ones at a “doubly exponential” rate. We’ll defer further sketching of his argument till later in the article. Not everyone (no surprise) agrees with Neven but Google definitely has earned credentials in this space.

RISE OF QC CONSULTANTS: D-WAVE PARTNERS WITH SIGMA-I

D-Wave 2000Q System

First up is D-Wave, which yesterday announced forming a partnership with Sigma-i, a spin-out from Tohoku University. Sigma-i is touted as a “company formed to optimize the world with quantum computing technologies.” Might as well have stretch aspirations. Sigma-i is one of an emerging class of quantum computing consultants. In this instance its expertise is in quantum annealing

“In Japan, many companies look forward to the real-world applications that quantum computing can and will bring,” said Masayuki Ohzeki, CEO of Sigma-i. “This contract couples our quantum expertise with D-Wave’s powerful quantum computing systems, bridging the gap between industry and academia, and ushering in a new era of quantum computing in Japan.”

D-Wave labeled its partnership with Sigma-i as “the biggest commercial, global quantum deal to date – [and] will power increased access to commercial quantum computing systems, paving the way towards a practical quantum future” but didn’t precisely explain what that encompasses. Sigma-I’s roots seem to be part of the Tohoku University Quantum Annealing Research Development (T-QARD) project. Two key Sigma-i offerings include:

  • Application development. Sigma-i will consult with commercial, research and educational institutions in Japan to help them build quantum applications. No mention is made of whether Sigma-I will develop applications (IP) of its own
  • Access D-Wave’s “Cloud”. Sigma-i will act as a sort of concierge ‘portal’ for access to D-Wave’s 2000Q family of products through Leap (cloud platform). It’s unclear if broad training is also offered.

D-Wave says the Sigma-i team is deeply knowledgeable about how to program the D-Wave system and will offer consulting services, “including coding best practices and embedding problems onto the D-Wave system.” In April, Tohoku, D-Wave, and automotive manufacturer Denso reported developing a new algorithm to segment certain problem types into sub-problems more readily solved on the D-Wave system.

“This contract signals the ongoing growth of our cloud business and the increasing interest in quantum computing worldwide,” according to Vern Brownell, CEO of D-Wave. Back in February, D-Wave announced an 18-month technology roadmap featuring a new underlying fab technology, reduced noise, increased connectivity, 5000-qubit processors, and an expanded toolset for creation of hybrid quantum-classical applications. (See HPCwire article, D-Wave Previews Next-Gen Platform; Debuts Pegasus Topology; Targets 5000 Qubits)

IBM-MITSUBISHI PAPER PUSHES NISQ CAPABILITY

A rendering of IBM Q System One, the world’s first fully integrated universal quantum computing system, currently installed at the Thomas J Watson Research Center. Source: IBM

Last week, IBM and Mitsubishi Chemical reported they had simulated the initial steps of the reaction mechanism between lithium and oxygen in Li-air batteries – the first research of its kind to have been simulated on a quantum computer. Their paper (Computational Investigations of the Lithium Superoxide Dimer Rearrangement on Noisy Quantum Devices) was posted on arXiv last week.

Quantum chemistry has long been a prime target for quantum computing. The new work introduces a method for reducing the complexity of the calculation. Here’s the abstract:

“Currently available noisy intermediate-scale quantum (NISQ) devices are limited by the number of qubits that can be used for quantum chemistry calculations on molecules. We show [the] number of qubits required for simulations on a quantum computer can be reduced by limiting the number of orbitals in the active space. Thus, we have utilized ansätze that approximate exact classical matrix eigenvalue decomposition methods (Full Configuration Interaction).

“Such methods are appropriate for computations with the Variational Quantum Eigensolver algorithm to perform computational investigations on the rearrangement of the lithium superoxide dimer with both quantum simulators and quantum devices. These results demonstrate that, even with a limited orbital active space, quantum simulators are capable of obtaining energy values that are similar to the exact ones. However, calculations on quantum hardware underestimate energies even after the application of readout error mitigation,” according to the paper.

In the recent work, researchers demonstrate the reduction of orbitals used in the calculation to just the “highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) of the stationary points can effectively reduce this problem down to two qubits for the investigation of the complete mechanism of this rearrangement reaction.” The paper is best read in full.

This joint research was made possible through the IBM Q Network Hub at Keio University in Japan. IBM reports, “Only one year into the collaboration, the hub of IBM, Keio, Mitsubishi Chemical, Mitsubishi UFJ Financial Group, and Mizuho Financial Group has not only made progress in practical battery chemistry, but also published work in financial risk analysis, and other fundamental quantum research.”

Like D-Wave, IBM has been aggressively expanding its quantum presence worldwide. In a separate announcement today, Big Blue reported expansion of its IBM Q Network in Europe. The new members, Aalto University, University of Turku, EPFL, University of the Basque Country and The International Iberian Nanotechnology Laboratory “will have direct access to IBM Q Network resources and access to the IBM Q Experience’s publicly available quantum computing systems for teaching, as well as faculty and student research projects that advance quantum information science and explore early applications.”

NEVENS LAW – IS QUANTUM SUPREMACY AT HAND?

Quantum supremacy – the notion of a quantum computer performing a task that classical computers cannot – was the first attempt to provide a simple description of the capability that would indicate quantum computing was ready to burst past traditional computing. It was followed by a somewhat less absolute notion, quantum advantage, which is the idea that quantum computers can do a task sufficiently better than classical machines to warrant making the switch. In either case, they are intended to represent a pivotal milestone for QC.

Neven’s idea is that achieving quantum supremacy is not far ahead and that doing so is the natural result of QC’s inherent advantages and quantum device advances – captured in Neven’s Law – as discussed earlier in this article. To demonstrate how quickly the gap is closing writer Kevin Hartnett recounts the experiences of Google AI in his article.

“In December 2018, scientists at Google AI ran a calculation on Google’s best quantum processor. They were able to reproduce the computation using a regular laptop. Then in January, they ran the same test on an improved version of the quantum chip. This time they had to use a powerful desktop computer to simulate the result. By February, there were no longer any classical computers in the building that could simulate their quantum counterparts. The researchers had to request time on Google’s enormous server network to do that,” wrote Hartnett.

You get the idea. QC is catching up and fast is the contention. Sometime last February, Neven reportedly had to request more resources – “We were running jobs comprised of a million processors.”

His notion of a doubly exponential rate is interesting. “Even exponential growth is pretty fast. It means that some quantity grows by powers of 2: 21, 22, 23, 24. The first few increases might not be that noticeable, but subsequent jumps are massive. Moore’s law, the famous guideline stating (roughly) that computing power doubles every two years, is exponential,” explained Hartnett.

Doubly exponential growth is more dramatic – instead of increasing by powers of 2, quantities increase by the power two raised to the power of two (shown below):

We’ll see if Neven’s observation proves true.

Link to Quanta article: https://www.quantamagazine.org/does-nevens-law-describe-quantum-computings-rise-20190618/

Link to Scientific American article: https://www.scientificamerican.com/article/a-new-law-suggests-quantum-supremacy-could-happen-this-year/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Nvidia Showcases Work with Quantum Centers at ISC24

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC24 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum sim Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger systems (e.g. exascale), according to Hyperion Research’s ann Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Oak Ridge National Laboratory in Tennessee, USA, retains its Read more…

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

ISC24: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire