Could Machine Learning Replace the Entire Weather Forecast System?

By Oliver Peckham

April 27, 2020

Just a few months ago, a series of major new weather and climate supercomputing investments were announced, including a £1.2 billion order for the world’s most powerful weather and climate supercomputer and a tripling of the U.S.’ operational supercomputing capacity for weather forecasting. Weather and climate modeling are among the most power-hungry use cases for supercomputers, and research and forecasting agencies often struggle to keep up with the computing needs of models that are, in many cases, simulating the atmosphere of the entire planet as granularly – and as regularly – as possible.

What if that all changed?

In a virtual keynote for the HPC-AI Advisory Council’s 2020 Stanford Conference, Peter Dueben outlined how machine learning might (or might not) begin to augment – and even, eventually, compete with – heavy-duty, supercomputer-powered climate models. Dueben is the coordinator for machine learning and AI activities at the European Centre for Medium-Range Weather Forecasts (ECMWF), a UK-based intergovernmental organization that houses two supercomputers and provides 24/7 operational weather services at several timescales. ECMWF is also the home of the Integrated Forecast System (IFS), which Dueben says is “probably one of the best forecast models in the world.”

Why machine learning at all?

The Earth, Dueben explained, is big. So big, in fact, that apart from being laborious, developing a representational model of the Earth’s weather and climate systems brick-by-brick isn’t achieving the accuracy that you might imagine. Despite the computing firepower behind weather forecasting, most models remain at a 10 kilometer resolution that doesn’t represent clouds, and the chaotic atmospheric dynamics and occasionally opaque interactions further complicate model outputs.

“However, on the other side, we have a huge number of observations,” Dueben said. “Just to give you an impression, ECMWF is getting hundreds of millions of observations onto the site every day. Some observations come from satellites, planes, ships, ground measurements, balloons…” This data – collected over the last several decades – constituted hundreds of petabytes if simulations and climate modeling results were included. 

“If you combine those two points, we have a very complex nonlinear system and we also have a lot of data,” he said. “There’s obviously lots of potential applications for machine learning in weather modeling.”

Potential applications of machine learning

“Machine learning applications are really spread all over the entire workflow of weather prediction,” Dueben said, breaking that workflow down into observations, data assimilation, numerical weather forecasting, and post-processing and dissemination. Across those areas, he explained, machine learning could be used for anything from weather data monitoring to learning the underlying equations of atmospheric motions.

By way of example, Dueben highlighted a handful of current, real-world applications. In one case, researchers had applied machine learning to detecting wildfires caused by lightning. Using observations for 15 variables (such as temperature, soil moisture and vegetation cover), the researchers constructed a machine learning-based decision tree to assess whether or not satellite observations included wildfires. The team achieved an accuracy of 77 percent – which, Deuben said, “doesn’t sound too great in principle,” but was actually “quite good.” 

Elsewhere, another team explored the use of machine learning to correct persistent biases in forecast model results. Dueben explained that researchers were examining the use of a “weak constraint” machine learning algorithm (in this case, 4D-Var), “which is a kind of algorithm that would be able to learn this kind of forecast error and correct it in the data assimilation process.” 

A visualization of the 4D-Var bias correction, with the lighter blue segments representing lower biases over time as the model learned. Image courtesy of Peter Dueben.

“We learn, basically, the bias,” he said, “and then once we have learned the bias, we can correct the bias of the forecast model by just adding forcing terms to the system.” Once 4D-Var was implemented on a sample of forecast model results, the biases were ameliorated. Though Dueben cautioned that the process is “still fairly simplistic,” a new collaboration with Nvidia is looking into more sophisticated ways of correcting those forecast errors with machine learning.

Dueben also outlined applications in post-processing. Much of modern weather forecasting focuses on ensemble methods, where a model is run many times to obtain a spread of possible scenarios – and as a result, probabilities of various outcomes. “We investigate whether we can correct the ensemble spread calculated from a small number of ensemble members via deep learning,” Dueben said. Once again, machine learning – when applied to a ten-member ensemble looking at temperatures in Europe – improved the results, reducing error in temperature spreads.

Can machine learning replace core functionality – or even the entire forecast system?

“One of the things that we’re looking into is the emulation of different permutation schemes,” Dueben said. Chief among those, at least initially, have been the radiation component of forecast models, which account for the fluxes of solar radiation between the ground, the clouds and the upper atmosphere. As a trial run, Dueben and his colleagues are using extensive radiation output data from a forecast model to train a neural network. “First of all, it’s very, very light,” Dueben said. “Second of all, it’s also going to be much more portable. Once we represent radiation with a deep neural network, you can basically port it to whatever hardware you want.”

Showing a pair of output images, one from the machine learning model and one from the forecast model, Dueben pointed out that it was hard to notice significant differences – and even refused to tell the audience which was which. Furthermore, he said, the model had achieved around a tenfold speedup. (“I’m quite confident that it will actually be much better than a factor of ten,” Dueben said.)

A comparison of radiation outputs from a machine learning emulator and the original model. Image courtesy of Peter Dueben.

Dueben and his colleagues have also scaled their tests up to more ambitious realms. They pulled hourly data on geopotential height (Z500) – which is related to air pressure – and trained a deep learning model to predict future changes in Z500 across the globe using only that historical data. “For this, no physical understanding is really required,” Dueben said, “and it turns out that it’s actually working quite well.”

Still, Dueben forced himself to face the crucial question.

“Is this the future?” he asked. “I have to say it’s probably not.”

There were several reasons for this. First, Dueben said, the simulations were unstable, eventually “blowing up” if they were stretched too far. “Second of all,” he said, “it’s also unknown how to increase complexity at this stage. We only have one field here.” Finally, he explained, there were only forty years of sufficiently detailed data with which to work.

Still, it wasn’t all pessimism. “It’s kind of unlikely that it’s going to fly and basically feed operational forecasting at one point,” he said. “However, having said this, there are now a number of papers coming out … where people are looking into this in a much, much more complicated way than we have done with really sophisticated convolutional networks … and they get, actually, quite good results. So who knows!”

The path forward

“The main challenge for machine learning in the community that we’re facing at the moment,” Dueben said, “is basically that we need to prove now that machine learning solutions can really be better than conventional tools – and we need to do this in the next couple of years.”

There are, of course, many roadblocks to that goal. Forecasting models are extraordinarily complicated; iterations on deep learning models require significant HPC resources to test and validate; and metrics of comparison among models are unclear. Dueben also outlined a series of major unknowns in machine learning for weather forecasting: could our explicit knowledge of atmospheric mechanisms be used to improve a machine learning forecast? Could researchers guarantee reproducibility? Could the tools be scaled effectively to HPC? The list went on.

“Many scientists are working on these dilemmas as we speak,” Dueben said, “and I’m sure we will have an enormous amount of progress in the next couple of years.” Outlining a path forward, Dueben emphasized a “mixture of a top-down and a bottom-up approach to link machine learning with weather and climate models.” Per his diagram, this would combine neutral networks based on human knowledge of earth systems with reliable benchmarks, scalability and better uncertainty quantification.

As far as where he sees machine learning for weather prediction in ten years?

“It could be that machine learning will have no long-term effect whatsoever – that it’s just a wave going through,” Dueben mused. “But on the other hand, it could well be that machine learning tools will actually replace almost all conventional models that we’re working with.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Point. The system includes Intel's research chip called Loihi 2, Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Research senior analyst Steve Conway, who closely tracks HPC, AI, Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, and this day of contemplation is meant to provide all of us Read more…

Intel Announces Hala Point – World’s Largest Neuromorphic System for Sustainable AI

April 22, 2024

As we find ourselves on the brink of a technological revolution, the need for efficient and sustainable computing solutions has never been more critical.  A computer system that can mimic the way humans process and s Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire