Using JUWELS, Researchers Work to Advance Polymer-Based Filtration Processes

November 30, 2021

Nov. 30, 2021 — Separating and filtering complex mixtures is essential for many industrial and medical applications. In fact, industrial separation processes of chemicals account for roughly 10 percent of the world’s energy consumption. Researchers at the University of Göttingen, Helmholtz-Zentrum Hereon, and University of Hamburg are using a combination of simulation and experiments to deepen our understanding of how to make these essential processes more efficient.

Polymers are a broad class of materials made up of long chain molecules of repeating units —anything from biopolymers such as plant cellulose to a variety of synthetic materials, used in everyday applications such as packaging or car tires, among countless other applications. The polymer length and structure play significant roles in how polymers are able to mix (or phase separate) with other polymers.

Self-assembly of an AB diblock copolymer in the course of solvent evaporation from a thin film, as observed by particle simulations with the GPU-accelerated program SOMA. Time increases from left to right, and the inset illustrates the arrangement of the chain molecules into A-rich (red) and B-rich (blue) domains. Left: The solvent prefers the majority component of the diblock copolymer and the evaporation process results in cylindrical domains, vertically orientated to the polymer-vapour interface of the film. This pore orientation is desirable for filtration membranes. Right: Switching the solvent and vapour affinities, however, results in lying cylinders.
Image courtesy of Oliver Dreyer, Gregor J. Ibbeken, Ludwig Schneider, Niklas Blagojevic, Maryam Radjabian, Volker Abetz, and Marcus Müller

Connecting two polymers into a single, long chain molecule, also called a diblock copolymer, gives rise to the “self-assembly” of these polymers at the molecular level, meaning that the two polymer blocks spontaneously separate into different spatial regions or domains at the nanoscale, and these domains arrange in distinct ways that create patterns with cylindrical pores or other shapes.

As materials science has advanced, researchers are increasingly turning to such diblock copolymers to develop thin films and membranes to help separate complex chemical mixtures. These pores or channels can act as “gatekeepers,” as their dimensions can be tailored in such a way to only allow certain molecules to pass through.

Once science had a rough understanding of the process of fabricating polymer membranes, scientists and engineers started to implement it in certain industrial separation methods. Unfortunately, membrane fabrication (i.e., the process of forming a membrane) depends on a multitude of thermodynamic and kinetic parameters and is still not well understood at a fundamental level.

In recent years, researchers at the University of Göttingen have collaborated with the experimental group of Prof. Dr. Volker Abetz (Helmholtz-Zentrum Hereon and University of Hamburg) to advance our understanding of these processes at a fundamental level in the hopes of better understanding how process-directed self-assembly in the course of solvent evaporation from a polymer film or the exchange of solvent and nonsolvent can help tailor this nonequilibrium phase separation process.

“Our work in this area is motivated by the fact that solvent evaporation is a basic and ubiquitous real-world process,” said Prof. Dr. Marcus Müller, Professor of Theoretical Physics at the University of Göttingen. “Polymer solutions are frequently employed in the preparation of polymer films and membranes, yet this process is not well understood and simulation studies are in their infancy.” Müller and his collaborators have been using high-performance computing (HPC) resources at the Jülich Supercomputing Centre (JSC) to study the phase separation and self-assembly at the molecular level.

Pull Yourself Together

The fabrication of polymer membranes has made large advancements in recent decades, but is still an emergent field of study. While these self-assembled structures are very effective at filtering out desired molecules in a chemical mixture, they are also very fragile and prone to fouling—clogging of a polymer membrane’s pores that prevents it from filtering out the desired molecules.

Müller and a group of international collaborators are investigating a suite of potential methods to improve copolymer self-assembly and polymer membranes used in filtration or separation processes. Perhaps the most exciting and promising among them lies in the realm of process-directed self-assembly.

“As a theoretical physicist, I am really fascinated by process-directed self-assemblywhere the processing pathway—in our case, the evaporation or solvent exchange—is utilized to fabricate a functional nanostructure,” Müller said. “This kind of processing is a well-known strategy in engineering. Japanese swordsmiths all the way back in feudal Japan knew that micrometre-sized grains in metals dictate their mechanical application properties, for instance, but processing on the molecular time and length scales is much less explored and understood.”

Experiments have been the driving force in finding new ways to use polymers in this research field, but rely heavily on prior knowledge followed by trial and error. To accelerate development of new fabrication processes, researchers like Müller and his collaborators pair experiment with simulation.

Experiments serve as the basis for simulations, as researchers want to recreate the experimental conditions in their computational models as closely as possible. Unlike experiments, though, simulations allow researchers to not only model the process of structure formation in time and space, but also to access conditions that are difficult to create in experiments in order to highlight the role of specific interactions or process parameters. This strategy provides insights and suggests how modifications impact the structure of a polymer membrane and its ability to effectively filter a mixture.

However, in order to accurately model a given system, simulations must be large enough to capture real-world conditions while detailed enough to accurately represent molecules’ interactions with one another. Further, researchers need simulations to follow the large spectrum of time scales involved in the membrane formation and usage. That means that researchers like Müller require access to HPC resources, such as JSC’s modular supercomputing system JUWELS.

Using a combination of theory and experiment, Müller and his collaborators have already gained new insights into how the relationship between polymer structure, thermodynamics, and process conditions influences membrane fabrication, but stressed that this field is still emergent and more experimental and computational work remains.

Next-Generation Technologies Advance Next-Generation Industrial Processes

Müller indicated that advancements in both experimental techniques as well as computational power have already played a big role in furthering researchers’ understanding of polymer membranes. “These are exciting times, because by virtue of new techniques and resources like the JUWELS Booster module at JSC, the time and length scales of simulation and experiment are starting to truly converge,” he said. “One can anticipate many opportunities of fruitful collaboration in the context of nonequilibrium structure formation of polymer materials.”

Cutting-edge computational resources such as the JUWELS Booster—currently the fastest machine in Europe and among the top 10 most energy-efficient machines in the world—can only truly demonstrate their computational muscle if scientists and engineers can make effective use of them, though, and Müller indicated that JSC’s emphasis on training has helped improve his team’s performance significantly.

Specifically, he pointed to JSC’s GPU Hackathons as being beneficial for not only improving performance, but also generally sharing best practices across JSC’s user base. GPUs, a relatively recent addition to the many supercomputing ecosystems, were originally designed to quickly render graphics in high-end computer gaming, but have become powerful accelerators for simulations programmed to use them in concert with traditional CPUs. Müller indicated that by participating in the GPU Hackathons, the team was able to port and scale its code to run effectively across multiple GPUs on the JUWELS Booster module.

“Hackathons allow my group members and experts from JSC like Dr. Andreas Herten as well as NVIDIA experts like Markus Hrywniak to team up. This collaboration started for us with an event in 2016, and continued through the JUWELS Booster early-access program and Hackathon at the end of last year,” he said. “This personal contact to HPC experts at JSC and NVIDIA is essential. It allows us to acquire top-notch technical knowledge and is also a great team-building activity that brings together new and experienced group members – my group members dedicate a lot of work to these exciting events, but it also provides a lot of excitement and motivation and is also a lot of fun.”

Moving forward, the team plans to leverage its increased knowledge of using the JUWELS Booster to include even more processes in their simulations in the hopes of not just validating experimental hypotheses, but suggesting new potential materials. Müller indicated that by using JUWELS’ modular computing concept to draw from its ultra-fast GPUs and robust CPUs, the team could combine different modelling approaches to further accelerate the iteration between computational scientists and experimentalists.

Funding for JUWELS was provided by the Ministry of Culture and Research of the State of North Rhine-Westphalia and the German Federal Ministry of Education and Research through the Gauss Centre for Supercomputing (GCS).


Source: Eric Gedenk, Gauss Centre for Supercomputing (GCS)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy With Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire