German Quantum Project QSolid to Integrate with JSC Supercomputing Infrastructure

March 9, 2022

JÜLICH, Germany, March 9, 2022 — Building a complete quantum computer based on cutting-edge German technology is the goal of the QSolid collaborative project, which has just started and to which the Federal Ministry of Education and Research has allocated € 76.3 million ($84M USD)  in funding for the next five years. The project centers on quantum bits – or qubits for short – of very high quality, i.e. with a low error rate. The quantum computer will be integrated into Forschungszentrum Jülich’s supercomputing infrastructure at an early stage and will contain several next-generation superconducting quantum processors, including a “moonshot” system that has been proven to exceed the computing power of conventional computers. The first demonstrator will go into operation in mid-2024, and will make it possible to test applications as well as benchmarks for industry standards.

Quantum computers promise breakthroughs in materials and drug development and in optimizing traffic management solutions. In future, they could vastly exceed the capabilities of conventional supercomputers for certain tasks. However, the technology is still in its infancy. Although developing a usable quantum computer comes with enormous challenges, it also offers an opportunity to set industry standards and secure intellectual property rights from the outset.

Cryogenic setup and control of a superconducting quantum computer at Forschungszentrum Jülich. Copyright: Forschungszentrum Jülich / Sascha Kreklau

Focus on Industrial Applications

To pave the way for commercialization, 25 leading German companies and research institutions have joined forces in the collaborative project QSolid. The research consortium coordinated by Forschungszentrum Jülich is the largest of its kind in Germany. Together, the project partners aim to develop a comprehensive ecosystem for a demonstrator based on superconducting qubits, which will be made accessible to external users via the Jülich UNified Infrastructure for Quantum computing (JUNIQ) and tailored to their individual needs.

Quantum Computers with Diverse Processors

The partners aim to develop a system containing various quantum processors based on next-generation superconducting circuits with a reduced error rate. This approach is regarded as cutting-edge by the international community and is also used by companies such as Google, IBM, and Intel. The multiprocessor machine will be located at Forschungszentrum Jülich, where it will operate at least three different quantum chips in parallel: a “moonshot” system with computing power exceeding that of conventional supercomputers, an application-specific system designed to perform quantum calculations for industry, and a benchmarking platform that prioritizes the development of digital twins and industry standards.

Solid project coordinator Prof. Frank Wilhelm-Mauch from Forschungszentrum Jülich. Copyright: Forschungszentrum Jülich / Sascha Kreklau

Focus on Qubit Quality

“Our focus is on improving the quality of the quantum bits, a goal we are pursuing on all levels in QSolid,” says Prof. Frank Wilhelm-Mauch from Forschungszentrum Jülich. Qubits’ susceptibility to errors is a sticking point in the development of quantum computers. The quantum states used to store quantum information respond extremely sensitively to external influences. They are often disrupted before all computing operations have been completed.

“The optimizations we have in mind start with next-generation superconducting circuits with a particularly low error rate, which we plan to achieve using high-precision manufacturing methods and new material systems, for example. Other essential elements include optimal control of the qubits as well as state-of-the-art error avoidance methods based on artificial intelligence (AI) on a firmware level, an area in which QSolid aims to set new standards,” explains Wilhelm-Mauch.

Network of Research Institutions

To achieve the ambitious goal of an independent quantum computer manufactured in Germany, QSolid is bringing together research institutions, companies, and start-ups from across the country. Seven subinstitutes from Jülich’s Peter Grünberg Institute are contributing their expertise to the project; the Jülich Supercomputing Centre (JSC), the Central Institute of Engineering, Electronics and Analytics (ZEA-2), and Qruise – a spin-off of Forschungszentrum Jülich – have also taken on a number of important tasks. Other research partners that are contributing valuable specialist knowledge include Fraunhofer IPMS and Fraunhofer IZM-ASSID, Karlsruhe Institute of Technology (KIT), Leibniz IPHT in Jena, the National Metrology Institute (PTB), CiS Forschungsinstitut für Mikrosensorik, and a number of universities including Ulm University, the University of Stuttgart, Freie Universität Berlin, the University of Konstanz, the University of Cologne, and Heinrich Heine University Düsseldorf.

Setting Up a National Supply Chain

Numerous manufacturers and start-ups are involved in setting up a national development and supply chain. ParityQC, HQS, Rosenberger HF-Technik, IQM, supracon, ParTec, Racyics, AdMOS, LPKF Laser & Electronics, Atotech, Atos science+computing ag, Globalfoundries, and Zurich Instruments Germany are participating as project partners, giving them the opportunity to set the first industry standards and exploit the potential of the technology at an early stage.

Quantum infrastructure at Forschungszentrum Jülich
In developing its superconducting quantum architecture, QSolid can draw on the experience of several experts including Prof. Rami Barends, who moved from Google’s research team to Forschungszentrum Jülich last autumn. The next-generation quantum processors will mainly be manufactured in the Helmholtz Nano Facility at Forschungszentrum Jülich. This 1,000-square-metre cleanroom complex run by the Helmholtz Association is equipped with state-of-the-art facilities for the production and characterization of quantum components. By 2025, an additional facility will be built in the form of the Helmholtz Quantum Center (HQC), a specially designed laboratory infrastructure for quantum computing.

First Systems By 2024

The first prototypes of the planned demonstrators in QSolid are being produced at Leibniz IHPT in Jena and are expected to be operational by 2024. A production line for superconducting circuits is already in place at IHPT and will be converted to create a pilot line for superconducting quantum circuits as part of the QSolid project.

Important preliminary work to help achieve the project goals has already been carried out. Results from the European flagship project OpenSuperQ and the collaborative projects DAQC and GeQcos, which were launched in 2021, will be incorporated into QSolid’s activities.

QSolid Project Overview

Project title QSolid (Quantum computer in the solid state)
Project duration January 2022 – December 2026
Budget € 76.3 million (of which 89.8 % is funded by the BMBF)
Coordination Forschungszentrum Jülich, Prof. Dr. Frank Wilhelm-Mauch
Partners Forschungszentrum Jülich (PGI-12-, PGI-2, PGI-8, PGI-11, PGI-13, PGI-3, PGI-9, JSC, ZEA-2), Qruise, Fraunhofer, KIT, IPHT, ParityQC, HQS, Rosenberger, Ulm University, PTB, University of Stuttgart, Freie Universität Berlin, IQM, University of Konstanz, University of Cologne, Heinrich-Heine University Düsseldorf, Supra, ParTec, RI, AdMOS, LPKF, Atotech, Atos, GF, CiS, ZI
Website http://www.q-solid.de
Twitter https://twitter.com/QSolid_DE

Further information:

“In Superposition”, article from effzett magazine 1/2021

Focus article “Quantum Technology”

Participating institutes and institute divisions at Forschungszentrum Jülich:

Peter Grünberg Institute, Institute for Quantum Computing Analytics (PGI-12)

Peter Grünberg Institute, Theoretical Nanoelectronics (PGI-2 / IAS-3)

Peter Grünberg Institute, Quantum Control (PGI-8)

Peter Grünberg Institute, JARA-Institute Quantum Information (PGI-11)

Peter Grünberg Institute, Institute for Functional Quantum Systems (PGI-13)

Peter Grünberg Institute, Quantum Nanoscience (PGI-3)

Peter Grünberg Institute, Semiconductor Nanoelectronics (PGI-9)

Jülich Supercomputing Centre (JSC)

Central Institute of Engineering, Electronics and Analytics, Electronic Systems (ZEA-2)

About Jülich Supercomputing Centre

The Jülich Supercomputing Centre at Forschungszentrum Jülich has been operating the first German supercomputing centre since 1987, and with the Jülich Institute for Advanced Simulation it is continuing the long tradition of scientific computing at Jülich. Computing time at the highest performance level is made available to researchers in Germany and Europe by means of an independent peer-review process. At the time being, JSC operates one of the most powerful supercomputers in Europe, JUWELS.


Source: Jülich Supercomputing Centre

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy with Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire