PNNL, Micron Work on New Memory Architecture for Blended HPC/AI Workflows

By John Russell

March 9, 2022

Memory-bound computing performance has become the way of life in much of HPC. While processor speeds have improved, mostly through specialization and parallelism, the ability to move data to and from processors has not kept pace. This is especially true given the rise of blended AI/HPC workflows and their dependence on heterogeneous architectures. Now, a team of researchers from Pacific Northwest National Laboratory and memory technology vendor Micron began a project to help relieve this bottleneck.

Led by James Ang, PNNL’s chief scientist for computing, and Tom Brewer, Micron chief architect for near-data computing, the project intends to create a third level of memory hierarchy and leverage the CXL standard. There’s a brief account of the work in ASCRDiscovery.

[Update 3/12/20: project milestones added at end of article]

As Brewer explains. “The host would have some local memory, the GPU would have some local memory, but the main capacity memory is accessible to all compute resources across a switch, which would allow scaling of much larger systems.” This unified memory would let researchers using deep-learning algorithms to run a simulation while its results simultaneously feed back to the algorithm.”

Brewer said the Micron-PNNL collaboration will examine mixing old and new memory technologies to boost high-performance computing (HPC) workloads including efforts to “improve the memory devices themselves and efforts that look at how we can take traditional high-performance memory devices and run applications more efficiently.”

As described by the researchers, “In HPC systems that deploy AI, high-performance but low-capacity memory (typically gigabytes) is typically coupled to the GPUs, whereas a conventional system with low-performance but high-capacity memory (terabytes) is loosely coupled via the traditional HPC workhorses, central processing units (CPUs). [This project] will create proof-of-concept shared GPU and CPU systems and combine them with additional external storage devices in the hundreds of terabytes range. Future systems will need rapid access to petabytes of memory – a thousand times more capacity than on a single GPU or CPU.”

The researchers say a centralized memory system also benefits operations because an algorithm or scientific simulation can share data with, say, another program that’s tasked with analyzing those data. These converged application workflows are typical in DOE’s scientific discovery challenges. Sharing memory and moving it around involves other technical resources, says Andrés Márquez, a PNNL senior computer scientist. This centralized memory pool, on the other hand, would help mitigate the issue of over-provisioning the memory.

Ang told HPCwire that the CXL standard is gaining traction in HPC. A brief description of CXL is below the list of project milestones.

Link to ASCRDiscovery article, https://ascr-discovery.org/2022/02/memory-boost/

Feature Image: A composite visual of a supercomputing testbed. Image courtesy of Jeff London/Pacific Northwest National Laboratory.

PROJECT MILESTONES

High Level Synthesis Milestones: 

  • Generation of specialized accelerators starting from high-level programming frameworks targeting Micron near memory design.
  • Automated generation of high-throughput custom accelerators for irregular kernels (sparse, graph analytics) for large (shared) memory pools
  • Extend automated generation of parallel accelerators with memory centric analysis to account for novel memory technologies (large memory pools, non-volatile memories, different memory hierarchies). Parallel accelerators include high-throughput architectures as well as dataflow based architectures.
  • Enable automated generation of complex designs including multiple intercommunicating near memory accelerators

Performance Analysis Milestones:

  • Memory (or location-based) “zooming” analysis to find “interesting” memory regions that have many accesses and that also have poor access patterns, poor spatio-temporal locality, or represent a similar bottleneck. Similarly, find memory regions that could be allocated within a scratchpad memory.
  • Memory system-level analysis and modeling by incorporating system-wide activity analysis and by applying automatic memory-centric and actor-centric diagnostics
  • Develop data object-based “zooming” analysis to attributing diagnostics to data objects. Capture traces of memory allocations and their call paths to associate memory regions with data objects
  • Identify potential control points within source code for pinpointing bottlenecks or for program adaptation by attributing memory analysis results to code regions.
    • Extend execution interval tree to include static/code features
    • Generate calling context tree representation
  • Develop analysis to target near-data computing for a GPU accelerator within fabric-attached memory. Collect memory address traces from NVidia GPU accelerators leveraging NVBit and perform location-based zooming.
  • Analysis and evaluation on AI/ML applications
    • DarkNet (C/C++ based): https://pjreddie.com/darknet/
    • AI/ML kernels on GPU accelerators near data
    • Translations of FPGA designs leveraging SODA’s x86 binaries

Scale Out Milestones:

Runtime:

  • Selection and initial design of programming model for a big memory accelerator
  • Prepare host’s distributed tasking and data movement infrastructure (leveraging the ARTS runtime system)

Compiler:

  • Explore high level interfaces on the compiler to extract detailed information about the workflow for multi granularity analysis
  • Identify and coordinate runtime/compiler interface with hardware and the rest of the software toolchain

CXL:
Compute Express Link (CXL) is an open industry standard interconnect offering high-bandwidth, low- latency connectivity between host processor and devices such as accelerators, memory buffers, and smart I/O devices. It is designed to address the growing high-performance computational workloads by supporting heterogeneous processing and memory systems with applications in Artificial Intelligence, Machine Learning, Analytics, Cloud Infrastructure, Cloudification of the Network and Edge, communication systems, and High Performance Computing. It does this by enabling coherency and memory semantics on top of the PCI Express (PCIe) 5.0 based I/O semantics for optimized performance in evolving usage models. This is increasingly important as processing data in these emerging applications requires a diverse mix of scalar, vector, matrix and spatial architectures deployed in CPU, GPU, FPGA, smart NICs, and other accelerators.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Core42 Is Building Its 172 Million-core AI Supercomputer in Texas

May 20, 2024

UAE-based Core42 is building an AI supercomputer with 172 million cores which will become operational later this year. The system, Condor Galaxy 3, was announced earlier this year and will have 192 nodes with Cerebras Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's latest weapon in the AI battle with GPU maker Nvidia and clou Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire