Peter Shor Wins Breakthrough Prize in Fundamental Physics

September 26, 2022

Sept. 26, 2022 — Peter Shor, the Morss Professor of Applied Mathematics at MIT, has been named a recipient of the 2023 Breakthrough Prize in Fundamental Physics. He shares the $3 million prize with three others for “foundational work in the field of quantum information”: David Deutsch at the University of Oxford, Charles Bennett at IBM Research, and Gilles Brassard of the University of Montreal.

In announcing the award, the Breakthrough Prize Foundation highlighted Shor’s contributions to the quantum information field, including the eponymous Shor’s algorithm for factoring extremely large numbers, and for an algorithm to correct errors in quantum computers.

“These ideas not only paved the way for today’s fast-developing quantum computers; they are now also at the frontiers of fundamental physics, especially in the study of metrology — the science of measurement — and of quantum gravity,” the award announcement reads.

“I’m very grateful to see the prize going to quantum information and quantum computation theory this year,” Shor commented to MIT News. “My three co-winners were the most influential people in founding this field. I consider them friends, and they all clearly deserve it.”

In addition, an MIT alumnus, Daniel A. Spielman PhD ’95, has won the 2023 Breakthrough Prize in Mathematics for “contributions to theoretical computer science and mathematics, including to spectral graph theory, the Kadison-Singer problem, numerical linear algebra, optimization, and coding theory.”

“I am ecstatic to see both Peter Shor and Dan Spielman be recognized with Breakthrough Prizes in Fundamental Physics and Mathematics, respectively,” says Michel Goemans, the RSA Professor and head of MIT’s Department of Mathematics.  “Both would have been natural nominees of the Breakthrough Prize in Theoretical Computer Science, if such a prize existed. Peter and Dan are PhD graduates of our math department, both have held tenured appointments in our department and have been members of the theory group at CSAIL, and both have received the same prizes. It is a testimony of the importance of theoretical computer science across disciplines, in particular mathematics and physics.”

Quantum Seeds

The first seeds of quantum computing’s potential were planted through the early algorithms derived by Deutsch, Bennett, Brassard, and Shor.

In the early 1980s, Deutsch began thinking of problems whose solutions could be sped up using quantum algorithms — formulas that were derived using the laws of quantum mechanics, rather than classical physics. He was the first to develop a quantum algorithm that could solve a simple, albeit contrived, problem far more efficiently than a classical algorithm.

Meanwhile, Bennett and Brassard were also looking for uses of quantum information. In 1984, they developed the first quantum cryptography protocol, BB84. They put forth the idea that two distant parties could agree on a secret encryption key, which would be secure against eavesdroppers, based on a strange quantum principle in which the value of the encryption key would instantly be disturbed and therefore unreadable when measured.

Their work demonstrated the first practical application of quantum information theory. It was also Shor’s first introduction to the field. The mathematician was working at AT&T Bell Labs at the time, and Bennett came to give a talk on his new quantum key encryption system. “Their work inspired me to do a little thinking and research on quantum information,” Shor recalls. “But I didn’t really get anywhere at the time.”

A decade later, in 1994, Shor introduced his own landmark algorithm. Shor’s algorithm describes how a sufficiently large quantum computer could efficiently factorize extremely large numbers — a task that would take more than the age of the universe for the most powerful classical supercomputer to solve.

Most data encryption schemes today rely on the difficulty of factorization to keep information secure. Shor’s algorithm was the first to show that, in theory, a quantum system could break through most modern data security walls. To do this practically, however, would require a system of many precisely controlled quantum bits. Even then, scientists assumed that the tiniest noise in the environment would disrupt the delicate qubits, and set off a ripple of errors in their calculations that could not be corrected without further disturbing the qubits.

“When I first came up with this factoring algorithm, people thought it would remain theoretical forever because there was this argument that you could not correct errors on a quantum computer,” Shor says.

Shortly thereafter, in 1995, Shor worked out another algorithm, this time on quantum error correction, which showed that errors in a quantum system could in fact be isolated and fixed without disturbing the qubit itself, thereby leaving the quantum computation intact. The vision of a practical quantum computer became immediately tangible.

“With these two bombshell contributions, Peter set the stage for quantum computing to become the huge field that it is now,” says Alan Guth, the Victor F. Weisskopf Professor of Physics at MIT, who as a former recipient of the Breakthrough Prize, was the one who called Shor to deliver the news of this year’s award.

“It was a real pleasure for me to be able to tell him that he is one of the winners,” Guth says. “His algorithms took the world by surprise, and ignited the field of quantum computing. And despite his spectacular contributions, Peter continues to be a warm, friendly, smiling colleague to all around him.”

“Peter is a wonderful colleague and is totally unique,” adds Goemans. “His thought process seems to parallel the quantum algorithms he designs and invents: Out of entangled ideas and a superposition of states, a brilliant solution often emerges in a Eureka moment!”

“One of the best things about MIT is that we have great students,” says Shor, who earned a PhD in applied mathematics from MIT in 1985. He then spent one year as a postdoc at the Mathematical Sciences Research Institute before moving on to work at AT&T Bell Labs, where he developed Shor’s algorithm. In 2003, he returned to MIT, where he has continued his research and teaching for the past 20 years.

Today, he is working to formulate a theory of quantum information, which would describe how data can be stored and transmitted, using the principles of quantum physics. Will there come a day when quantum computers are advanced enough to break through our classical security systems?

“In five or 10 years, we could be at the start of a Moore’s Law, where quantum computers will steadily improve every few years,” Shor predicts. “I suspect they’ll improve fast enough that within two or three decades we will get quantum computers that can do useful stuff. Hopefully by the time quantum computers are that large, we’ll be using different crypto systems that aren’t susceptible to quantum computers.”

Shor credits his father with fostering his early interest in mathematics. As a young boy, would flip through his father’s issues of Scientific American, to find his favorite section.

“Martin Gardner had a column, ‘Mathematical Games,’ which was really amazing,” Shor recalls. “It was sometimes a puzzle, sometimes a report on a new discovery in mathematics, and it was often at a level that I could understand. I looked forward to reading it every month, and that was something that turned me onto math early on.”

Beautiful Breakthroughs

Daniel Spielman, this year’s recipient of the Breakthrough Prize in Mathematics, received a PhD in applied mathematics at MIT in 1995, for which he was advised by Michael Sipser, the Donner Professor of Mathematics and former dean of the MIT School of Science. Spielman then joined the math department and was on the MIT faculty until 2005, before moving on to Yale University, where he is currently the Sterling Professor of Computer Science, Mathematics, Statistics and Data Science.

Spielman specializes in the design and analysis of algorithms, many of which have yielded insights “not only for mathematics, but for highly practical problems in computing, signal processing, engineering, and even the design of clinical trials,” notes the Breakthrough Foundation in their announcement today.

“Dan has made a number of important and beautiful breakthroughs over the years, from expander-based error-correcting codes, to the smoothed analysis of algorithms, or spectral sparsifications of graphs, all characterized by innovative mathematics,” says Goemans.

Among numerous discoveries, Spielman is best known for solving the Kadison-Singer problem, which for decades was thought to be unsolvable. The problem can be interpreted as posing a fundamental question for quantum physics: In a quantum system, can new information be deciphered, if only some of the system’s properties are observed or measured? The answer, most mathematicians agreed, was no.

Over decades, the Kadison-Singer problem was reformulated and shown to be equivalent to problems across a wide range of mathematical fields. And in 2013, Spielman and his colleagues resolved one of these equivalent formulations involving linear algebra and matrices, proving the answer to be yes — indeed, it was possible to determine a quantum system’s sum from its parts.

The Breakthrough Prizes are a set of international awards that recognize the achievements of scientists in three categories — fundamental physics, mathematics, and life sciences. The prizes were founded by Sergey Brin; Priscilla Chan and Mark Zuckerberg; Julia and Yuri Milner; and Anne Wojcicki, and have been sponsored by foundations established by them. The 2023 prizes will be presented at a gala award ceremony, and prize recipients will take part in lectures and discussions.


Source: , MIT

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: NASA Results Revealed!

May 2, 2024

In this edition of the Winter Classic Studio Update Show we reveal the results from the NASA BTIO Challenge. The benchmark, BTIO, is a subset of the NAS Parallel benchmark and NASA set up a formidable set of milestones, Read more…

2024 Winter Classic: NASA Mentor Interview

May 2, 2024

The folks at NASA Ames once again did a bang-up job as a mentor for the 2024 Winter Classic. This is the third time they’ve fulfilled this vital function, and their challenges keep getting better and better. In thei Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 1, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to deliver practical quantum computing - a race that James Clarke Read more…

Amazon’s New AI Assistant Is an Editor to Prevent Hallucinations

May 1, 2024

Large-language models regularly spit out off-the-rails answers, and companies are introducing editors and guardrails to ensure that responses from AI are more on point. Amazon this week announced the general availabil Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very aggressive cadence of Falcon Shores products following that Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire