University of Potsdam Researchers Utilize Supercomputers to Understand Binary Neutron Star Mergers

January 24, 2023

With the help of new observational data of gravitational waves and electromagnetic signatures, University of Potsdam researchers are using supercomputers to understand binary neutron star mergers.

Jan. 24, 2023 — In 2015, astrophysicists, astronomers, and astrophiles celebrated an exciting development. For roughly 100 years, researchers had hypothesized the existence of gravitational waves — waves of gravity in space-time caused by large, violent events in the cosmos such as supernovas or neutron star mergers — but had never seen direct evidence confirming their existence. When the Laser Interferometer Gravitational-Wave Observatory (LIGO) in the United States definitively detected a gravitational wave event, researchers set out to build on this finding to advance astrophysics research.

Simulation of a neutron-star–black-hole coalescence in which the neutron star is tidally disrupted during the merger. Credit: T. Dietrich (Potsdam University and Max Planck Institute for Gravitational Physics), N. Fischer, S. Ossokine, H. Pfeiffer (Max Planck Institute for Gravitational Physics), S.V.Chaurasia (Stockholm University), T. Vu.

“Since 2015, we’ve seen about 100 gravitational wave events. This kind of research is extremely new, and it has a huge potential for additional inputs that we can’t currently get through other observations,” said Prof. Tim Dietrich, researcher at the University of Potsdam. Since that time, Dietrich and his research group have been using high-performance computing (HPC) resources to simulate cosmic phenomena that produce gravitational waves. Specifically, the team has been using the High-Performance Computing Center Stuttgart’s (HLRS’s) Hawk supercomputer to simulate what happens when binary neutron stars collide. Over the last three years, the team has made significant strides modelling these complex celestial events in unprecedented detail, and simulations on Hawk have contributed to more than a dozen scientific journal articles in the process, including publications in the leading journals Nature and Science.

Come Together

Neutron stars are essentially the fossil relics of massive stars that have reached their ends. When stars run out of fuel, they start to collapse before their outer layers expand explosively outward in a supernova. These massive events not only produce gravitational waves, but also project heavy elements and other materials across the universe. The remaining material cools (relatively speaking) to a brisk 1,000 degrees Celsius and further consolidates, becoming an ultra-dense neutron star. (The name comes from the fact that after a supernova, heavy neutrons comprise the bulk of the remaining materials.) If two of these objects drift too close to one another, strong gravitational pull causes them to merge, forming a much larger neutron star or creating a black hole in the process.

Astrophysicists can detect neutron star mergers through their observational signatures, such as gravitational waves. To complement these methods, scientists also simulate these events using supercomputers. This makes it possible to understand at a fundamental level how these events produce gravitational waves and electromagnetic signals, and eject materials across the universe.

To do that, though, researchers need to have a reliable model that can accurately represent the complex physics interactions taking place at a wide variety of scales within these massive systems. This requires world-leading HPC resources, and even today’s most powerful machines cannot completely simulate these events from first principles. For Dietrich and his collaborators, this has meant finding ways to improve computational efficiency without sacrificing realistic physics in their simulations.

For the team, simulating neutron star mergers realistically means including so-called multi-messenger physics information. As the name implies, multi-messenger physics collates information describing multiple physical phenomena to get a more comprehensive picture of materials’ behaviors at a fundamental level. Measurements of features including photons (light), a mysterious class of elementary particles called neutrinos, high-energy cosmic rays, and gravitational waves provide valuable, detailed information for researchers at both small and large scales, but are very difficult to integrate into a single simulation that accurately represents the entire system. “We need to perform 5,000 operations for the evolution of a single point in our computational grid,” said Anna Neuweiler, a PhD candidate in Dietrich’s group and collaborator on the project. “Of course, our grid is comprised of many points, so for even just one time evolution, we need a lot of capacity to compute and solve our equations.”

Simulation of two merging neutron stars, each with a mass of 1.35 solar masses. From red to blue, increasing densities are shown. Credit: T. Dietrich, Potsdam University and Max Planck Institute for Gravitational Physics.

Using Hawk, the team has been able to get closer to an accurate simulation of neutron star mergers based on first principles by selectively lowering the resolution of portions of its simulation that are less pertinent to the research. In addition, the researchers compare multi-messenger physics data in their simulations with complementary heavy-ion collision experiments being run at specialized experimental facilities on Earth. This combined approach has enabled the team both to advance the state of the art in researching binary neutron star mergers and to create a reliable application that they hope to enrich with even more first-principles physics calculations in the years to come. While the team has run larger simulations on other systems, access to Hawk laid the foundations for their successful simulation approach in the recent past.

“I don’t point to one big accomplishment in our work, because all these developments aim at getting a better understanding of the physics. This means that even simulations that move incrementally are still necessary, and might become even more important down the line. It is more like a marathon than a sprint,” Dietrich said.

Turbulence Ahead

Having successfully improved its code’s computational efficiency, the team is now focused on ways to include even more detail in its simulations. As part of her PhD research, Neuweiler has begun including first-principles magnetic field calculations in the team’s code, leading to a significant increase in computational demands. “Understanding the role that magnetic fields play is mostly important for simulating what happens after neutron stars merge so that we have a more accurate description of how matter flows,” she said. “We would like to gain a more accurate description, and in principle we have additional equations and variables that we can use, but it will be more computationally expensive than what we are currently doing.”

Dietrich also indicated that in the future the team would like to include accurate descriptions of turbulence at the smallest scales of their simulations, as well as details about neutrino physics that are becoming available as astrophysicists learn more about these mysterious particles. Researchers are also looking forward to the next predicted binary neutron star merger observation run in the May, 2023, and another one in 2026. With each new event the team will gain access to valuable observational data, enabling them to refine their simulations further. “There will be a lot of instances where we can use our simulations to interpret things better, and we need the resources to do the analysis of the computational data,” Dietrich said. “So, one thing is for sure—we will definitely not be asking for less computational time moving forward.”


Source: Eric Gedenk, High-Performance Computing Center Stuttgart (HLRS)

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy With Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire