Cornell Researchers Bring Quantum Error Correction Closer to Reality with Non-Abelian Anyons

April 14, 2023

April 14, 2023 — Some classical computers have error correction built into their memories based on bits; quantum computers, to be workable in the future, will need error correction mechanisms, too, based on the vastly more sensitive qubits.

Cornell researchers have recently taken a step toward fault-tolerant quantum computing: they constructed a simple model containing exotic particles called non-Abelian anyons, compact and practical enough to run on modern quantum hardware. Realizing these particles, which can only exist in two dimensions, is a move towards implementing it in the real world.

Thanks to some creative thinking, Yuri Lensky, a former Bethe/Wilkins/Kavli Institute at Cornell (KIC) postdoctoral fellow in physics in the College of Arts and Sciences (A&S), collaborating with Eun-Ah Kim, professor of physics (A&S), came up with a simple “recipe” that could be used for robustly computing with non-Abelian anyons, including specific instructions for executing the effect experimentally on devices available today.

Their paper, “Graph Gauge Theory of Mobile Non-Abelian Anyons in a Qubit Stabilizer Code,” written in collaboration with theorists at Google Quantum AI, published March 24 in Annals of Physics. Google Quantum AI researchers, together with Lensky and Kim, have proved the theory with a successful experiment as reported in a preprint publication, “Observation of Non-Abelian Exchange Statistics on a Superconducting Processor,” on the research-sharing platform arXiv.

“This two-dimensional state is interesting both from a quantum condensed matter physics perspective – it has some novel properties that are very special to 2D physics – and from a quantum information perspective,” Lensky said. “It’s something truly quantum, but it’s also potentially useful for quantum computation. It protects bits of quantum information by storing them non-locally, and our protocol allows us to compute with these bits.”

Kim explained the principle that animates non-Abelian anyons by holding out two identical one-pound barbells. When she crosses her arms, the identical barbells change positions, but as objects defined by classical physics, their state remains the same. They are interchangeable.

If those barbells represent two identical quantum particles, remarkably in certain 2D systems their trails through space-time can produce a measurable record of the change (picture the crossed arms.) This process of exchange is called a braid, after the shapes of the particle trails.

“Quantum mechanically, when you move one particle around the other,” Kim said, holding one weight still and moving the other in a circle around it, “the wave function, which is a solution to the Schrödinger equation describing quantum mechanical motion, can be multiplied by a phase factor or it can become something that’s very different.”

When the wave function gains a global sign that can only be observed through interferometry, a measurement of the interference of waves, that’s called an Abelian anyon. When the wave function becomes measurably different, it’s a non-Abelian anyon, she said.

Non-Abelian anyons could be harnessed to create qubits defined not on a single particle, but on a pair of identical quantum particles: nonlocally encoded.

“If I put the qubit shared between these particles in a zero state and move them apart, then whatever happens locally to one of these anyons, the zero state will remain. The qubit set to zero is safe from corruption,” Kim said. “Non-Abelian anyons could be used in a platform for protected qubits.”

But while physicists have theorized about these exotic particles for years – Alexei Kitaev proposed operating on protected bits of quantum memory by braiding non-Abelian anyons back around 2001, Lensky said – they have never been observed in a physical system before now.

When Google Quantum AI developed the quantum processor platform capabilities to realize the surface code and braiding of Abelian anyons in a physical system, Lensky said, “This was [our] inspiration to look for a way to realize the physics of non-Abelian anyons as soon as possible.”

“We knew they had the working ingredients, but they didn’t have a recipe,” Kim said. “We figured out how to move these non-Abelian anyons, then we told the experimentalists what to do. It was possible because Yuri and I were thinking in a flexible, creative and open-minded way.”

Past theoretical research identified non-Abelian properties, but came up short on how to move them, a necessary step. A key insight from Lensky and Kim was to give up the regularity of a grid and arrange qubits in an almost hand-drawn manner but backed up by robust mathematics.

“After this simple geometric insight, using gauge theory, we were able to come up with the protocol of taking this picture and implementing it on a chip in a robust and efficient way,” Kim said. “With this 10-qubit system, we were able to encode multiple non-Abelian anyons, and therefore multiple logical information-carrying qubits, and a precise recipe for what the experimentalists need to do every step of the way.”

“Although the focus of the theory and experiment is simply to realize non-Abelian anyons in the real world, this can also be viewed as a first small step towards implementing computation by braiding,” Lensky said.

This research was supported by an A&S New Frontier Grant; an Ewha Frontier 10-10 Research Grant; the Simons Fellowship in Theoretical Physics; and the National Science Foundation.


Source: Kate Blackwood, Cornell

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very aggressive cadence of Falcon Shores products following that Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Researching both the world around us and the bodies we inhabit has c Read more…

Atos/Eviden Find a Strategic Path Forward

April 29, 2024

French IT giant Atos seems to have found a path forward. In recent years, Atos has been struggling financially and has not had much luck finding a buyer for some or all of its technology. Atos is the parent of the Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly debuted the latest version (February 15) and recently provi Read more…

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the University of Chicago, leads Chameleon. This innovative projec Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable quantum memory framework. “This work provides a promising Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

Intel’s Xeon General Manager Talks about Server Chips 

January 2, 2024

Intel is talking data-center growth and is done digging graves for its dead enterprise products, including GPUs, storage, and networking products, which fell to Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire