New 3D Models Reveal How Warming Climate Affects Underwater Ocean Tides

April 17, 2024

April 17, 2024 — Scientists at the University of Bonn have utilized the JUWELS supercomputer at the Jülich Supercomputing Center to improve models of how ocean tides are changing in a warming climate.

Changes in the size of the twice-daily M2 tide caused by recent ocean warming. Large simulations with a global three-dimensional ocean model were performed on JUWELS to determine both the change of the baroclinic tide (panel a) and the barotropic tide (panel b). Values are trends of the respective tidal surface amplitude over 28 years. Image credit: Michael Schindelegger and Lana Opel.

Few things in nature are as predictable as ocean tides. Driven by the Moon’s and Sun’s gravitational pull, these persistent, short-period, and large-magnitude phenomena are apparent in nearly all types of oceanographic and satellite observations. They also directly impact the rhythm of life for millions of people and countless ecosystems.

But lately, researchers have noticed subtle changes in surface tidal measurements that do not coincide with changes of the Moon and Sun’s gravitational pull. Instead, collected data and theory indicate that a warming ocean surface may be behind the observations.

To investigate these phenomena, Dr. Michael Schindelegger at the University of Bonn has been utilizing supercomputing resources at the Jülich Supercomputing Centre (JSC) to better understand observational data collected between 1993–2020, improving the accuracy of three-dimensional (3D) ocean circulation models in the process.

“Tides often mask other potentially interesting and less predictable signals related to, for example, the general circulation of the ocean or effects of climate change,” explains Schindelegger. “Pulling climate signals from oceanographic observations also depends on the accuracy with which we can model tides, including their potential changes over time.”

Internal Currents Add Complexity

Scientists estimate that the upper 700 meters of the ocean absorb around 90 percent of the excess heat being trapped in the warming climate system. As this zone of the ocean warms up, it also expands and becomes less dense, leading to a higher contrast in water density compared to lower levels of the ocean that remain cooler and denser.

Specifically, Schindelegger and his colleagues are exploring the interactive relationship between a warming climate, ocean stratification as a measure of the density contrast, and two types of tidal currents: barotropic tides, which refer to the periodic motion of ocean currents associated with gravitational forces; and baroclinic or internal tides, which occur when barotropic tides flow against underwater topography, like a ridge, causing waves of denser water from the deep to push upward into less dense surface water.

“Warming in the upper ocean enhances the energy transfer from barotropic to baroclinic tides, such that the open-ocean tides are now losing a few percent more tidal energy to internal waves than they did three decades ago,” explains Schindelegger. To assess the severity of these changes and predict their impact on coastal regions, simulations have become an essential tool.

Observational Data and Modeling Must Work Together

Observing and modeling ocean tides is nothing new, and fresh data to work with becomes available every hour of every day. However, collected data near the coast can be afflicted with “noise” and errors, while computer models are always simplified representations of processes in the real word. This is why, according to Schindelegger, it is imperative to consider both observational data and models when testing for tidal changes. Furthermore, considering tides in a more realistic, stratified ocean — including these baroclinic tides — means that established 2D ocean models would need to be expanded to include depth as a third dimension and have a higher horizontal resolution to achieve useful accuracy.

“Early attempts at modeling were restricted to a one-layer, constant-density ocean model, which I could even run on a single CPU,” Schindelegger says. “But as I began researching the causes for changes in the ocean tides, especially the effects of stratification, 3D general circulation models became essential.”

Schindelegger says he spent about five years gradually adding complexity to the model, but it became clear that to achieve the necessary resolution for accurate 3D models, more computing power would be needed. For this reason, Schindelegger and his colleagues turned to JSC’s supercomputer, JUWELS.

“As the computational grid also extends into the vertical direction, we have about 300 million grid points to diagnose the relevant variables of pressure, temperature, and salinity from the model’s equations,” Schindelegger says. “We had to use one million core hours to successfully execute the project. Distributing the task to a large number of computational nodes was key to achieving feasible runtimes and avoiding memory issues. The resources available on JUWELS provided the necessary foundation for this kind of application.”

Predicting Future Tides

Schindelegger says that, although these surface tidal changes are subtle so far — an approximately one-centimeter drop over several decades at the coast, and even less in the deep ocean — it is still worthwhile to continue improving the 3D model until it can predict with reasonable accuracy how these changes in ocean stratification will impact coastal regions in the future. Especially for places like the Gulf of Maine or northern Australia, where the tides are pronounced and encounter complex underwater topography, even these small changes can have considerable implications.

With continued access to supercomputing resources, Schindelegger and his collaborators will leverage a powerful tool to complement studying observational data. Taken together, these two research methods will help researchers in the geosciences better understand the role that a warming ocean plays for tides and their role in the climate system.


Source: Sarah Waldrip, Gauss Centre 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

ISC 2024 Student Cluster Competition

May 16, 2024

The 2024 ISC 2024 competition welcomed 19 virtual (remote) and eight in-person teams. The in-person teams participated in the conference venue and, while the virtual teams competed using the Bridges-2 supercomputers at t Read more…

Grace Hopper Gets Busy With Science 

May 16, 2024

Nvidia’s new Grace Hopper Superchip (GH200) processor has landed in nine new worldwide systems. The GH200 is a recently announced chip from Nvidia that eliminates the PCI bus from the CPU/GPU communications pathway.  Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of the last panels at ISC 2024 — the discussion was fascinat Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire