More Bad News for Gamblers – AI Wins…Again

By John Russell

March 6, 2017

AI-based poker playing programs have been upping the ante for lowly humans. Notably several algorithms from Carnegie Mellon University (e.g. Libratus, Claudico, and Baby Tartanian8) have performed well. Writing in Science last week, researchers from the University of Alberta, Charles University in Prague and Czech Technical University report their poker algorithm – DeepStack – is the first computer program to beat professional players in heads-up no-limit Texas hold’em poker.

Sorting through the “firsts” is tricky in the world of AI-game playing programs. What sets DeepStack apart from other programs, say the researchers, is its more realistic approach at least in games such as poker where all factors are never fully known – think bluffing, for example. Heads-up no-limit Texas hold’em (HUNL) is a two-player version of poker in which two cards are initially dealt face down to each player, and additional cards are dealt face-up in three subsequent rounds. No limit is placed on the size of the bets although there is an overall limit to the total amount wagered in each game.

“Poker has been a longstanding challenge problem in artificial intelligence,” says Michael Bowling, professor in the University of Alberta’s Faculty of Science and principal investigator on the study. “It is the quintessential game of imperfect information in the sense that the players don’t have the same information or share the same perspective while they’re playing.”

Using GTX 1080 GPUs and CUDA with the Torch deep learning framework, “we train our system to learn the value of situations,” says Bowling on an NVIDIA blog. “Each situation itself is a mini poker game. Instead of solving one big poker game, it solves millions of these little poker games, each one helping the system to refine its intuition of how the game of poker works. And this intuition is the fuel behind how DeepStack plays the full game.”

DeepStack Research Team

In the last two decades, write the researchers, “computer programs have reached a performance that exceeds expert human players in many games, e.g., backgammon, checkers, chess, Jeopardy!, Atari video games, and go. These successes all involve games with information symmetry, where all players have identical information about the current state of the game. This property of perfect information is also at the heart of the algorithms that enabled these successes,” write the researchers.

“We introduce DeepStack, an algorithm for imperfect information settings. It combines recursive reasoning to handle information asymmetry, decomposition to focus computation on the relevant decision, and a form of intuition that is automatically learned from self-play using deep learning.”

In total 44,852 games were played by the thirty-three players with 11 players completing the requested 3,000 games, according to the paper. Over all games played, DeepStack won 492 mbb/g. “This is over 4 standard deviations away from zero, and so, highly significant.” According to the authors, professional poker players consider 50 mbb/g a sizable margin. Using AIVAT to evaluate performance, we see DeepStack was overall a bit lucky, with its estimated performance actually 486 mbb/g.”

(For those of us less prone to take a seat at the Texas hold’em poker table, mbb/g equals milli-big-blinds per game or the average winning rate over a number of hands, measured in thousandths of big blinds. A big blind is the initial wager made by the non-dealer before any cards are dealt. The big blind is twice the size of the small blind; a small blind is the initial wager made by the dealer before any cards are dealt. The small blind is half the size of the big blind.)

It’s an interesting paper. Game theory, of course, has a long history and as the researchers note, “The founder of modern game theory and computing pioneer, von Neumann, envisioned reasoning in games without perfect information. ‘Real life is not like that. Real life consists of bluffing, of little tactics of deception, of asking yourself what is the other man going to think I mean to do. And that is what games are about in my theory.’ One game that fascinated von Neumann was poker, where players are dealt private cards and take turns making bets or bluffing on holding the strongest hand, calling opponents’ bets, or folding and giving up on the hand and the bets already added to the pot. Poker is a game of imperfect information, where players’ private cards give them asymmetric information about the state of game.”

According to the paper, DeepStack algorithm is composed of three ingredients: a sound local strategy computation for the current public state, depth-limited look-ahead using a learned value function to avoid reasoning to the end of the game, and a restricted set of look-ahead actions. “At a conceptual level these three ingredients describe heuristic search, which is responsible for many of AI’s successes in perfect information games. Until DeepStack, no theoretically sound application of heuristic search was known in imperfect information games.”

The researchers describe DeepStack’s architecture as a standard feed-forward network with seven fully connected hidden layers each with 500 nodes and parametric rectified linear units for the output. The ’turn’ network was trained by solving 10 million randomly generated poker turn games. These turn games used randomly generated ranges, public cards, and a random pot size. The flop network was trained similarly with 1 million randomly generated flop games.

Link to paper: http://science.sciencemag.org/content/early/2017/03/01/science.aam6960.full

Link to NVIDIA blog: https://news.developer.nvidia.com/ai-system-beats-pros-at-texas-holdem/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic: NASA Mentor Interview

May 2, 2024

The folks at NASA Ames once again did a bang-up job as a mentor for the 2024 Winter Classic. This is the third time they’ve fulfilled this vital function, and their challenges keep getting better and better. In thei Read more…

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 1, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to deliver practical quantum computing - a race that James Clarke Read more…

Amazon’s New AI Assistant Is an Editor to Prevent Hallucinations

May 1, 2024

Large-language models regularly spit out off-the-rails answers, and companies are introducing editors and guardrails to ensure that responses from AI are more on point. Amazon this week announced the general availabil Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very aggressive cadence of Falcon Shores products following that Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Researching both the world around us and the bodies we inhabit has c Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire