Compilers and More: Accelerating High Performance

By Michael Wolfe

May 7, 2008

My prediction: High performance computing will soon be dominated by accelerator-based systems.

You may ask: Why will accelerators be better than multicore processors? Why now and not ten years ago? Why accelerators and not exciting new processors? Who will produce them? And how will we migrate to accelerators and how will we program them? I’ll answer these questions in order.

Why accelerators? The market for accelerators has always been, and likely always will be, much smaller than the market for commodity processors. This means that they don’t have a cost model that will support legions of designers and billion-dollar fab plants to use the very latest technology; accelerators will always be, technologically, one or two generations behind the big chip vendors. The big vendors must go after the high volume market to generate the revenue to pay for the most aggressive chip technology. Face it, HPC is not a high volume business.

Given that the clock race has ended, we move to multicore. Multicore designs aimed at the general-purpose market look a lot like shared memory multiprocessors, except with less total memory bandwidth. I’ve heard vendors and researchers point out that we could increase the core count dramatically if we’re willing to simplify the cores by eliminating superscalar instruction issue, speculative and out-of-order instruction execution, register renaming, and so on. This is true, but look at what we’re accomplishing. Today’s aggressive processors manage many levels of low-level parallelism: multiple instructions issued simultaneously, dozens (perhaps a hundred) instructions in flight, speculative memory loads and branch prediction, all managed and synchronized by hardware at clock granularity. We can remove all that and move to software-managed parallelism. Software thread creation, software speculation (and mis-speculation, including squashing), software synchronization, all because the multiple cores have no hardware support for parallelism.

But accelerators can use proven chip technology with lower cost. This allows them to attack smaller markets, even niche markets. Where a major chip vendor makes its bread and butter with binary compatibility, an accelerator can (indeed, must) make up what it lacks in technology using architecture. Today’s Clearspeed and programmable GPUs use multiple SIMD cores with high bandwidth memory. Any number of possible architectures may be replayed in the accelerator arena. These designs embrace parallelism in a way that multicore designs don’t — or won’t. Hardware support for thread creation, synchronization, and so on make small-grain parallelism feasible.

Why now? Previously, the general-purpose chip vendors could always stay a step ahead, or only slightly behind, the accelerators just using clock rates. Who would make the considerable investment in an accelerator when the next generation processor would be just as fast?

Today’s equations lean toward accelerators. Chips aren’t getting faster, just fatter. We’re going to have to invest in parallelism to get any performance increase, with multicore or with accelerators. We should invest in a strategy with the best support for parallelism and with the biggest upside. Accelerators depend on parallelism and have integral support for it; multicore processors are aimed at a much broader market, and only incidentally address HPC issues. Moore’s law still works, for now, and on-chip density will increase predictably. Since accelerators are farther behind on that curve, they can enjoy more of that benefit.

Why not just new processors? We’re back to economics on this question. Trying to develop and market a new processor means migrating a whole software ecosystem. This was done successfully in the RISC revolution of the 1980s, producing today’s SPARC and Power processors, among others. More recently, Intel and HP developed Itanium, which has achieved more limited success. Only a few vendors have the resources to develop a new processor with the full support necessary to make it viable, and those vendors have vested interests in their current processor strategy.

However, a processor with an accelerator can still run standard system software and tools. The migration to such a system can be limited to the HPC applications. Most of the cost of the whole system will be in components that would be necessary anyway; the additional cost of the accelerator is relatively low, but the performance boost is compelling.

Whose accelerators? Accelerators come and go. Some focus on particular applications.The CNAPS chip developed by Adaptive Solutions (founded by a former colleague at the Oregon Graduate Institute) was intended for neural network simulations, and was quite successful at accelerating Photoshop functions. GPUs are, and have always been, accelerators for pixel processing. In HPC today, we have Clearspeed and NVIDIA GPUs. I’m going to declare myself neutral on this question, though I envision a growing industry here, as the cost of entry is relatively low. It will be interesting to see what develops with the open HyperTransport and QuickPath interfaces, and what the chip vendors may put on their own silicon.

How to program accelerators? This is where it gets interesting. The current programming models — NVIDIA’s CUDA, AMD’s Brook+, RapidMind, and other research into stream programming — require a complete rewrite of the computationally intensive portion of the code. Each model constrains the programmer to the types of solutions that will run well in that model. For example, a stream model requires the programmer to define data streams and the operation that takes place, element-wise, on the stream. If the computation can be cast into that model, good performance is assured.

Coming from a compiler background, we at PGI wanted to know whether it is feasible to present as classical a programming model as possible, adding no more complexity than, say, OpenMP, or vectorization pragmas, or directives. Such approaches have many advantages: they are incremental, compatible, and have a long successful history. They are particularly successful if the programming model works efficiently across a range of targets. Codes for vectorizing compilers were largely portable across all vector machines, for instance. It doesn’t relieve the programmer from all rewriting, but it does use a familiar environment for testing and experimentation.

Borrowing from Bob Morgan’s book, “Building an Optimizing Compiler,” we used a thin spike approach to produce an entire toolchain to generate host+accelerator code. We modified our Fortran compiler to accept an “ACCEL/ENDACCEL” directive pair, where a loop between the directives is compiled for the accelerator. Our target was the NVIDIA GPU, and we used parts of their NVCC toolchain. The compiler identified the data that needed to be sent over and back, replaced the loop by runtime calls to initiate the work, brought the results back, and cleaned up afterwards. The result was working object code that we could link and execute. Apart from the compiler, the other parts of the toolchain — linker, make and makefiles, etc. — were unchanged.

And we made it work. Now, this is not a product announcement, or even a preannouncement. We developed this as an internal feasibility demonstration — more like a science fair compiler project. The decision to complete it as a product will depend largely on market forces. Other issues include choosing an accelerator target (or targets) and the commercial longevity of the target. GPUs, for instance, are much less restricted by silly things like binary compatibility, and the vendors come up with new versions every 6-12 months. We probably can’t develop and tune new compilers nearly that quickly.

But the basis is sound. We believe we can produce compilers that allow evolutionary migration from today’s processors to accelerators, and that accelerators provide the most promising path to high performance in the future.

—–

Michael Wolfe has developed compilers for over 30 years in both academia and industry, and is now a senior compiler engineer at The Portland Group, Inc. (www.pgroup.com), a wholly-owned subsidiary of STMicroelectronics, Inc. The opinions stated here are those of the author, and do not represent opinions of The Portland Group, Inc. or STMicroelectronics, Inc.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire