Programming Clusters Just Got Easier

By Michael Feldman

May 19, 2006

One of the biggest impediments to HPC application development today is the difficulty of writing software for cluster architectures. Unlike clusters, shared memory machines provide a globally accessible memory space, offering a more programmer-friendly environment for doing parallel processing with large datasets. But since clusters scale so economically, they have become the dominant high performance computing architecture today.

Unfortunately, writing applications for clusters means the programmer has to deal with the hard realities of distributed memory, where data has to be shuffled from one node to the other so that threads can talk with one another and data can be kept in a coherent state. Thus was born the Message Passing Interface (MPI), the de facto standard for parallel programming communications.

In the May issue of CTWatch Quarterly, Thom Dunning, Robert Harrison and Jeffrey Nichols write: “Without fear of contradiction, the MPI standard has been the most significant advancement in practical parallel programming in over a decade, and it is the foundation of the vast majority of modern parallel programs.”

But it's hard to find a real fan of MPI today. Most either tolerate it or hate it. Although it provides a widely portable and standardized programming interface for parallel computing, its shortfalls are numerous: hard to learn, difficult to program, no allowance for incremental parallelization, doesn't scale easily, and so on. It's widely acknowledged that MPI's limitations must be overcome to make parallel programming more accessible.

Dunning, Harrison and Nichols continue: “A completely consistent (and deliberately provocative) viewpoint is that MPI is evil. The emergence of MPI coincided with an almost complete cessation of parallel programming tool paradigm research. This was due to many factors, but in particular to the very public and very expensive failure of HPF. The downsides of MPI are that it standardized (in order to be successful itself) only the primitive and already old communicating sequential process (CSP) programming model, and MPI's success further stifled adoption of advanced parallel programming techniques since any new method was by definition not going to be as portable.”

For the NWChem quantum chemistry application that the authors are discussing in the CTWatch article, the solution to MPI's limitations was the use of the Global Arrays (GA) Toolkit. The Toolkit provides a shared memory style programming environment for use with distributed memory computers. The basic context consists of distributed array data structures — global arrays — used as if they are stored in shared memory. The needed functionality for data distribution and data access is transparent to the programmer. The GA model exposes to the programmer the non-uniform memory access (NUMA) characteristics of high performance computers and acknowledges that access to a remote portion of the shared data is slower than to the local portion.

But while the physical nature of distributed memory has been abstracted, the GA interface still requires that explicit calls be added to the code in order to manage the global data.

Which bring us to Cluster OpenMP, a distributed memory version of standard OpenMP developed by Intel. Standard OpenMP is a widely used programming interface for creating parallel applications on shared memory architectures. It's been around since 1997. Like OpenMP, Cluster OpenMP does not require that the programmer invoke explicit library calls to achieve parallelization; this is accomplished with in-line compiler directives. Like GA, it abstracts the physically distributed memory, but it avoids both MPI's and GA Toolkit's reliance on library calls to make things happen.  So you have the ability to switch off the compiler directives in the source code to restore your original serial program. Nice.

The Cluster OpenMP product was released on May 9 and is available with Intel's 9.1 Fortran and C++ compilers. Curiously, no press announcement was forthcoming from Intel about the release. But if you're wondering about Cluster OpenMP, you're in luck. In this issue, Intel's Jay Hoeflinger and Larry Meadows describe their new offering and how it can be used to turn an OpenMP program into a cluster-capable version.

Clustered JVM

This past week, Terracotta Inc., a vendor that provides scalable Java solutions for the enterprise, announced Terracotta 2.0., claimed to be the industry's first production-ready “clustered” Java Virtual Machine (JVM). In contrast with typical frameworks, Terracotta 2.0 clusters at the JVM level, instead of at the software application level, allowing application programmers to write normal Java code that will run transparently in clustered environments.

The Terracotta solution has some similarities to the Cluster OpenMP offering, inasmuch as it abstracts a cluster-wide shared memory. When shared Java objects are accessed by the application, Terracotta's cluster-aware software detects this at the intermediate byte-code level and reads/writes the data from/to the appropriate nodes to keep the objects coherent. Unlike Cluster OpenMP, the Terracotta solution requires no compiler directives; shared data is specified in the Java language itself.

In general, Java is not regarded as a conventional HPC language because of the run-time performance limitations related to its byte-code interpretive model. It's also a little weak in things such as floating-point/complex number support and control of low-level data layout. The Terracotta solution is geared towards high availability business applications that increasing need to scale out to large cluster environments. According to Terracotta engineers, their solution would also be very suitable for cluster and grid management tools, at the meta-level above the HPC applications.

In one of the great paradoxes of high performance computing, the most popular high-level languages for supercomputing applications — C and Fortran — are used not because they're so advanced, but because they're so primitive. C and Fortran source code maps easily to conventional CPU hardware, so the generated assembly code is able to achieve good performance. The result is that we end up using 30-year-old software languages to develop code for state-of-the-art supercomputers. Oh the irony!

—–

As always, comments about HPCwire are welcomed and encouraged. Write to me, Michael Feldman, at [email protected].

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Intersect360 Research Takes a Deep Dive into the HPC-AI Market in New Report

May 1, 2024

A new report out of analyst firm Intersect360 Research is shedding some new light on just how valuable the HPC and AI market is. Taking both of these technologies as a singular unit, Intersect360 Research found that the Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to deliver practical quantum computing - a race that James Clarke Read more…

Amazon’s New AI Assistant Is an Editor to Prevent Hallucinations

May 1, 2024

Large-language models regularly spit out off-the-rails answers, and companies are introducing editors and guardrails to ensure that responses from AI are more on point. Amazon this week announced the general availabil Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very aggressive cadence of Falcon Shores products following that Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Researching both the world around us and the bodies we inhabit has c Read more…

Atos/Eviden Find a Strategic Path Forward

April 29, 2024

French IT giant Atos seems to have found a path forward. In recent years, Atos has been struggling financially and has not had much luck finding a buyer for some or all of its technology. Atos is the parent of the Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Shutterstock 1748437547

Edge-to-Cloud: Exploring an HPC Expedition in Self-Driving Learning

April 25, 2024

The journey begins as Kate Keahey's wandering path unfolds, leading to improbable events. Keahey, Senior Scientist at Argonne National Laboratory and the Uni Read more…

Quantum Internet: Tsinghua Researchers’ New Memory Framework could be Game-Changer

April 25, 2024

Researchers from the Center for Quantum Information (CQI), Tsinghua University, Beijing, have reported successful development and testing of a new programmable Read more…

Intel’s Silicon Brain System a Blueprint for Future AI Computing Architectures

April 24, 2024

Intel is releasing a whole arsenal of AI chips and systems hoping something will stick in the market. Its latest entry is a neuromorphic system called Hala Poin Read more…

Anders Dam Jensen on HPC Sovereignty, Sustainability, and JU Progress

April 23, 2024

The recent 2024 EuroHPC Summit meeting took place in Antwerp, with attendance substantially up since 2023 to 750 participants. HPCwire asked Intersect360 Resear Read more…

AI Saves the Planet this Earth Day

April 22, 2024

Earth Day was originally conceived as a day of reflection. Our planet’s life-sustaining properties are unlike any other celestial body that we’ve observed, Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire