HPC-enabled Build-a-Satellite Program Could Fast Track National Security Space Missions

June 8, 2022

ALBUQUERQUE, N.M., June 8, 2022 — Satellites equipped with remote sensing technology execute many critical national security missions, from detecting explosions to tracking sea ice, but until now it could take a team years to move from a concept to a deployable space system.

Thomas Bradshaw, electrical engineer and flight software lead, inspects a computer board for an upcoming remote sensing mission designed to demonstrate next-generation high-performance computing in space. Credit: Craig Fritz

Valhalla, a Python-based performance modeling framework developed at Sandia National Laboratories, uses high-performance computing to build preliminary satellite designs based on mission requirements and then runs those designs through thousands of simulations. The results of the simulations feed into an interactive multidimensional video-like view of satellites executing their mission and hundreds of plots that show the user the relationship between each of the outputs and inputs at a glance. This data enables the user to quickly find the solution that best executes the mission.

Valhalla has already been used to explore space systems for enhanced Arctic security, study the effects of neuromorphic computing on space system design, simulate tracking and monitoring a hypothetical refugee rescue mission in the Mediterranean Sea and other satellite missions.

James Meub, Valhalla project lead and aerospace engineer, said a multidisciplinary team typically takes months, or even years, to produce a preliminary design for a remote sensing satellite or to determine how existing satellites would perform during a new mission. The team writes mission requirements based on what the satellites will need to detect and observe, then optical engineers design the payload and aerospace engineers design a host vehicle.

“The ability to understand how design decisions and requirements affect these simultaneous activities is iterative, time-consuming and essential to producing a reliable solution,” Meub said. “Valhalla short-circuits this process by using high-performance computing to help the user produce a preliminary design for a satellite or space system in weeks, and it can also show how groups of nonidentical satellites with different features will perform in new combinations and scenarios.”

Increasingly, a group of small satellites working as a system instead of one large satellite is being considered for remote sensing missions, Meub said.

Customizing a satellite system to mission requirements

Designing a space system with Valhalla is similar to customizing a new car online. A project team member visits Sandia’s internal Valhalla website and selects the features and parts needed to execute the mission. The first step is to provide Valhalla with mission requirements that can be parsed into quantitative goals, including:

  • Determining the level of fidelity and detail needed by specifying if the satellite system will need to detect, identify, categorize or associate objects or events.
  • Selecting the class of object or event to search for, including vehicles, explosions, aircraft, boats, space debris or other satellites.
  • Selecting the frequency of data collection, or how often the system should revisit the target objects or events.
  • Selecting the target’s motion model. Will the system need to observe the trajectory of trucks traveling from one location to another, or will it need to observe a city, region or neighborhood of interest, or monitor objects or events across the globe?
  • Specifying any constraints. For example, the system may need to be compatible with a specific external network.
  • Selecting a mission operation center to feed the images and data captured by the satellite.

With the mission requirements clearly defined, Meub said the next step is to select parts such as onboard computers, radios, batteries, reaction wheels, sensors, propulsion tanks and thrusters, and GPS receivers from a component catalog with about 2,500 parts to choose from.

Valhalla takes all the selected parts and creates a baseline satellite design by using encoded interface control documents, engineering best practices and rules-based logic, he said. It sizes the payload, structure, solar arrays and batteries, optimizes the mass of the satellite and its compatibility with various launch vehicles and generates a notional layout of components internal to the satellite.

A day-in-the-life in space

Valhalla then populates the baseline design into a group of satellites, often referred to as a constellation, and simulates the space system executing the mission by running a day-in-the-life power model simulation, Meub said. The simulation compares the mission performance metrics against space system goals and repeats that process thousands of times to find the best constellation design.

Valhalla also models the system’s orbital dynamics and the gravity harmonics of the earth, moon and sun to simulate the space environment each satellite will experience over the course of the day.

Meub said there are thousands of variables and relationships to consider when designing a space system for a specific national security mission, making the task well-suited for high-performance computing.

“Valhalla visualizes the relationship between variables so the user can see how the overall space system is affected when parameters that are relevant to each other change,” he said. “For example, the desired altitude of the spacecraft will affect the size of the telescope needed and vice versa. As the altitude of the satellite increases, the telescope also needs to become more powerful, but the system will need fewer satellites to provide enough sensing coverage to execute its mission.”

Creating interactive data visualizations for decision-making

The simulation data is post-processed in a graphics processing unit cluster. The GPU takes all the data from the simulation and combs through it to correlate performance metrics across variable sets to produce an N-dimensional hypersurface that provides the user with hundreds of plots, including a 3D visualization of the constellation executing its mission, revisit and collection statistics, launch vehicle compatibility and simulated satellite telemetry feeds.

“This allows users to analyze the simulation data quickly,” Meub said. “All the data in a trusted, digestible format — you can see why certain simulation runs produce better performance metrics than others. This enables teams to deliver national security solutions for some projects in months rather than years.”

Valhalla has been funded through the Laboratory Directed Research and Development program, the New Mexico Small Business Assistance program, the National Nuclear Security Administration and other government organizations.

About Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.


Source: Kristen Meub, Sandia National Laboratories

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can uncover patterns, generate insights, and make predictions that Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top500 list of the fastest supercomputers in the world. At s Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance computing (HPC) will remain essential, even as many applicati Read more…

EuroHPC Expands: United Kingdom Joins as 35th Member

May 14, 2024

The United Kingdom has officially joined the EuroHPC Joint Undertaking, becoming the 35th member state. This was confirmed after the 38th Governing Board meeting, and it's set to enhance Europe's supercomputing capabilit Read more…

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Software Foundation (HPSF). The announcement was made at the ISC Read more…

Nvidia Showcases Work with Quantum Centers at ISC 2024

May 13, 2024

With quantum computing surging in Europe, Nvidia took advantage of ISC 2024 to showcase its efforts working with quantum development centers. Currently, Nvidia GPUs are dominant inside classical systems used for quantum Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

ISC 2024 Keynote: High-precision Computing Will Be a Foundation for AI Models

May 15, 2024

Some scientific computing applications cannot sacrifice accuracy and will always require high-precision computing. Therefore, conventional high-performance c Read more…

Shutterstock 493860193

Linux Foundation Announces the Launch of the High-Performance Software Foundation

May 14, 2024

The Linux Foundation, the nonprofit organization enabling mass innovation through open source, is excited to announce the launch of the High-Performance Softw Read more…

ISC 2024: Hyperion Research Predicts HPC Market Rebound after Flat 2023

May 13, 2024

First, the top line: the overall HPC market was flat in 2023 at roughly $37 billion, bogged down by supply chain issues and slowed acceptance of some larger sys Read more…

Top 500: Aurora Breaks into Exascale, but Can’t Get to the Frontier of HPC

May 13, 2024

The 63rd installment of the TOP500 list is available today in coordination with the kickoff of ISC 2024 in Hamburg, Germany. Once again, the Frontier system at Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire