Meet Gina Tourassi, Director of the ORNL National Center for Computational Sciences

November 23, 2021

Nov. 23, 2021 — This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science User Facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Meet the director:

Gina Tourassi, director of the National Center for Computational Sciences, which hosts the Oak Ridge Leadership Computing Facility, a DOE Office of Science user facility at ORNL. Image Credit: Carlos Jones, ORNL

Since Gina Tourassi began her career, computer science has come a long way. Tourassi learned programming in the 1980s starting with QBasic. It’s a programming environment that hasn’t been included with Microsoft operating systems for more than 20 years. When she first discovered her love of computational research, computer scientists were programming artificial intelligence (AI) algorithms from scratch.

As a college physics student at the Aristotle University of Thessaloniki in Greece, Tourassi enjoyed applied math and physics courses. These courses pivoted her toward biomedical engineering for her graduate studies. In graduate school at Duke University, she realized a major passion for both research and computing. Tourassi decided to moveh3 into big data analytics, computational modeling, and AI for health care delivery. Tourassi spent 16 years in the Department of Radiology at the Duke University School of Medicine. Then she embarked upon a new adventure at Oak Ridge National Laboratory (ORNL), where she was hired to direct the Biomedical Sciences and Engineering Center.

Today Tourassi is the director of the National Center for Computational Sciences (NCCS) at ORNL. There, she is leading the center’s staff members in initiatives related to its world-class computing infrastructure programs and projects. These initiatives include the efforts to launch the nation’s first exascale system, the HPE Cray EX Frontier, which will be housed at ORNL. Exascale supercomputers will be capable of one quintillion calculations per second, or 1 with 18 zeroes. The NCCS hosts the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science user facility.

“I enjoy working side by side with NCCS staff members to deliver computing and data infrastructures for accelerated research and development,” Tourassi said. “We are giving the nation a significant advantage in the ever-changing scientific and economic landscape for open science, which makes every day meaningful.”


High-performance computing (HPC), or supercomputing, gives scientists the ability to model real-world situations at new levels of detail. It also helps them study areas that scientists can’t explore with experiment, observation, or theory alone. Computational scientists write complex mathematical formulas that can be carried out by these massive systems. The systems can then help provide solutions to some of the world’s most important problems. Using supercomputers, scientists can improve the safety and performance of nuclear power plants and aircraft. They accelerate the development of new drugs and advanced materials. They can even understand how the climate around the world is changing. Models on the OLCF’s supercomputers have explored hurricanes, fuels, diseases, and clean energy.


The director’s background:

After Tourassi completed her graduate studies at Duke University, she was awarded a postdoctoral position in the Department of Radiology at Duke University Medical Center. Within her first year, she received the National Institutes of Health Young Investigator Award, which launched her academic career. Over the next 16 years, Tourassi held positions as an assistant, associate, and then adjunct professor at Duke University School of Medicine.

In 2011, Tourassi joined ORNL as the director for the Biomedical Science and Engineering Center. She was hired to grow the research portfolio at ORNL. In 2013, she became the director of ORNL’s Health Data Sciences Institute. In 2019, only three months before the COVID-19 pandemic took hold of the United States, Tourassi became the NCCS director.

“I believe that personal and professional growth comes from taking risks, tackling new challenges, embracing change, and being comfortable with feeling uncomfortable,” Tourassi said. “The NCCS director position met many of the above criteria.”

Tourassi has also led the division as it has prepared for the installation and launch of the Frontier system. Frontier will offer best-in-class traditional scientific modeling and simulation capabilities while also leading the world in artificial intelligence and data analytics.

As director of the NCCS, Tourassi has continued to perform hands-on research. She currently leads the National Cancer Institute and DOE partnership, in addition to her role at the NCCS. The partnership is accelerating advances in predicting cancer using computing.

The facility:

The OLCF was established in 2004 to provide researchers from government, academia, and industry with access to leadership computing resources. At the time, individual programs received 100 times more computing power than what was available at other facilities.

From ORNL’s first Cray X-MP system deployed in the early 1980s to today’s 200-petaflop Summit supercomputer, the OLCF has seen more than a billionfold increase in computing power. The OLCF is now on the brink of delivering the first exascale system in the US, the 1.5-exaflop Frontier supercomputer. It will debut in 2021 and be available to users in 2022. The NCCS, a division of the Computing and Computational Sciences Directorate at ORNL, houses the OLCF.

“The OLCF—and, by extension, the NCCS—has been a global leader in HPC for nearly 30 years,” Tourassi said. “What we often forget when we talk about facilities such as the NCCS is that what makes them shine is not the technology they bring to bear but the caliber of the individuals who make it happen. These are individuals who not only have top-notch scientific and technical expertise but also unparalleled commitment to science and the national mission.”

Researchers can earn time on the OLCF systems, including Frontier, through three allocation programs: the INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, the ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and the Director’s Discretionary program.

Tourassi emphasized the diverse and unmatched capabilities that the NCCS and the OLCF afford. Both entities operate to fulfill a broad range of needs.

“The OLCF is unique in its ability to consistently answer the challenge of fielding and operating the nation’s fastest computer for open science,” Tourassi said. “The NCCS is unique in that we incorporate the OLCF into a larger HPC ecosystem that thinks more broadly and strategically to meet the nation’s compute and data needs.”

Tourassi pointed to some of the recent major successes of the OLCF’s current Summit system.

“Summit has helped the scientific community reach new heights in weather forecasting, gain new insights in materials, design efficient and durable jet engines, develop and deploy AI solutions for the national cancer surveillance program, and gain a better understanding of the coronavirus to guide vaccine development and drug targeting,” Tourassi said.

She said the upcoming Frontier system will bring even more advancements.

The HPE Cray EX Frontier supercomputer will be housed at the OLCF at ORNL. Image Credit: Jason Smith, ORNL

Exascale computing systems are capable of solving calculations more than five times faster than recent top supercomputers, exceeding a quintillion—or 1018—calculations per second. As the next level of computing performance, exascale will enable scientists to develop critically needed technologies for energy, medicine, materials, and more. The OLCF is launching one of America’s first exascale systems: the 1.5-exaflop HPE Cray EX Frontier supercomputer, a Cray system based on the Shasta Slingshot architecture and featuring AMD EPYC CPUs and AMD Radeon Instinct GPUs. For more information, please see “DOE Explains…Exascale Computing.”

Typical day:

Tourassi’s day consists of back-to-back meetings. They range from the various computing programs that the division leads, to personnel management, to the research projects she continues to lead.

“I also enjoy the regular one-on-one meetings I hold with the section heads and group leaders, which I consider important to staying connected with them, discussing challenges they face, and supporting them in achieving their goals,” Tourassi said.

Typical experiment:

The OLCF supports a broad range of scientific projects in many areas, such as biology, chemistry, geosciences, engineering, and energy. The OLCF offers researchers computing and data analysis resources many times more powerful than what they could access elsewhere.

Crystal structure of a representative cuprate superconductor and simulated photoemission spectrum. Image Credit: Zhenglu Li, Berkeley Lab

One project that the OLCF supports involves the study of superconductors. These are materials that have zero electrical resistance when they reach sufficiently low temperatures. Superconductors might be useful for technologies such as magnets for MRIs, fusion devices, and particle accelerators. A team led by Lawrence Berkeley National Laboratory’s Steven Louie and Zhenglu Li is studying copper-based superconductors to understand the interactions between negatively charged particles and the other particles in these materials. The team modeled materials on Summit and found that the negatively charged particles in these materials interact with quantum waves of vibrational motions much more strongly than was previously thought. That led to experimentally observed “kinks,” or sudden changes, in the relationship between a particle’s energy and the momentum it carries.

Another project built a workflow based on AI to more efficiently simulate the SARS-CoV-2 virus’ protein spike. Then the team, led by University of California San Diego’s Rommie Amaro and Argonne National Laboratory’s Arvind Ramanathan, ran the workflow on Summit to gain a deeper understanding of the spike and accelerate the search for medications or vaccines that might mitigate the spread of the virus or lessen its impact. The team simulated the SARS-CoV-2 virus’ spike in numerous environments, including within the SARS-CoV-2 viral envelope made of 305 million atoms. It was one of the most comprehensive simulations of the virus performed to date. The team was awarded the Association for Computing Machinery Gordon Bell Special Prize for HPC-Based COVID-19 Research for the work.

Best advice for a future director at the OLCF:

Tourassi said that success at the NCCS requires strategic thinking, not only in regard to the short-term requirements and deliverables, but also when thinking about the long-term computational and data needs of the scientific community. She said that the NCCS has a reputation of delivering some of the most unparalleled computing infrastructure for scientific research but that it can’t rely on past successes. Just as science is always advancing, the center’s computational tools and capabilities must be ever-evolving to meet emerging needs.

As far as advice to a future successor, Tourassi said: “It is important to understand that the role is to think strategically. We need to remain ever mindful and proactive in expanding our portfolio of capabilities by anticipating the scientific community’s computational needs. The DOE Leadership Computing Facilities are a disruptive force. They shape the way we think about and do science.”

DOE’s Office of Science. UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

AWS Arm-based Graviton3 Instances Now in Preview

December 1, 2021

Three years after unveiling the first generation of its AWS Graviton chip-powered instances in 2018, Amazon Web Services announced that the third generation of the processors – the AWS Graviton3 – will power all-new Amazon Elastic Compute 2 (EC2) C7g instances that are now available in preview. Debuting at the AWS re:Invent 2021... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies participated and, one of them, Graphcore, even held a separ Read more…

HPC Career Notes: December 2021 Edition

December 1, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Running a 3.2M vCPU HPC Workload on AWS with YellowDog

Historically, advances in fields such as meteorology, healthcare, and engineering, were achieved through large investments in on-premises computing infrastructure. Upfront capital investment and operational complexity have been the accepted norm of large-scale HPC research. Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

SC21 Was Unlike Any Other — Was That a Good Thing?

December 3, 2021

For a long time, the promised in-person SC21 seemed like an impossible fever dream, the assurances of a prominent physical component persisting across years of canceled conferences, including two virtual ISCs and the virtual SC20. With the advent of the Delta variant, Covid surges in St. Louis and contention over vaccine requirements... Read more…

The Green500’s Crystal Anniversary Sees MN-3 Crystallize Its Winning Streak

December 2, 2021

“This is the 30th Green500,” said Wu Feng, custodian of the Green500 list, at the list’s SC21 birds-of-a-feather session. “You could say 15 years of Green500, which makes it, I guess, the crystal anniversary.” Indeed, HPCwire marked the 15th anniversary of the Green500 – which ranks supercomputers by flops-per-watt, rather than just by flops – earlier this year with... Read more…

Nvidia Dominates Latest MLPerf Results but Competitors Start Speaking Up

December 1, 2021

MLCommons today released its fifth round of MLPerf training benchmark results with Nvidia GPUs again dominating. That said, a few other AI accelerator companies Read more…

At SC21, Experts Ask: Can Fast HPC Be Green?

November 30, 2021

HPC is entering a new era: exascale is (somewhat) officially here, but Moore’s law is ending. Power consumption and other sustainability concerns loom over the enormous systems and chips of this new epoch, for both cost and compliance reasons. Reconciling the need to continue the supercomputer scale-up while reducing HPC’s environmental impacts... Read more…

Raja Koduri and Satoshi Matsuoka Discuss the Future of HPC at SC21

November 29, 2021

HPCwire's Managing Editor sits down with Intel's Raja Koduri and Riken's Satoshi Matsuoka in St. Louis for an off-the-cuff conversation about their SC21 experience, what comes after exascale and why they are collaborating. Koduri, senior vice president and general manager of Intel's accelerated computing systems and graphics (AXG) group, leads the team... Read more…

Jack Dongarra on SC21, the Top500 and His Retirement Plans

November 29, 2021

HPCwire's Managing Editor sits down with Jack Dongarra, Top500 co-founder and Distinguished Professor at the University of Tennessee, during SC21 in St. Louis to discuss the 2021 Top500 list, the outlook for global exascale computing, and what exactly is going on in that Viking helmet photo. Read more…

SC21: Larry Smarr on The Rise of Supernetwork Data Intensive Computing

November 26, 2021

Larry Smarr, founding director of Calit2 (now Distinguished Professor Emeritus at the University of California San Diego) and the first director of NCSA, is one of the seminal figures in the U.S. supercomputing community. What began as a personal drive, shared by others, to spur the creation of supercomputers in the U.S. for scientific use, later expanded into a... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

IonQ Is First Quantum Startup to Go Public; Will It be First to Deliver Profits?

November 3, 2021

On October 1 of this year, IonQ became the first pure-play quantum computing start-up to go public. At this writing, the stock (NYSE: IONQ) was around $15 and its market capitalization was roughly $2.89 billion. Co-founder and chief scientist Chris Monroe says it was fun to have a few of the company’s roughly 100 employees travel to New York to ring the opening bell of the New York Stock... Read more…

Enter Dojo: Tesla Reveals Design for Modular Supercomputer & D1 Chip

August 20, 2021

Two months ago, Tesla revealed a massive GPU cluster that it said was “roughly the number five supercomputer in the world,” and which was just a precursor to Tesla’s real supercomputing moonshot: the long-rumored, little-detailed Dojo system. Read more…

Esperanto, Silicon in Hand, Champions the Efficiency of Its 1,092-Core RISC-V Chip

August 27, 2021

Esperanto Technologies made waves last December when it announced ET-SoC-1, a new RISC-V-based chip aimed at machine learning that packed nearly 1,100 cores onto a package small enough to fit six times over on a single PCIe card. Now, Esperanto is back, silicon in-hand and taking aim... Read more…

US Closes in on Exascale: Frontier Installation Is Underway

September 29, 2021

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, held by Zoom this week (Sept. 29-30), it was revealed that the Frontier supercomputer is currently being installed at Oak Ridge National Laboratory in Oak Ridge, Tenn. The staff at the Oak Ridge Leadership... Read more…

AMD Launches Milan-X CPU with 3D V-Cache and Multichip Instinct MI200 GPU

November 8, 2021

At a virtual event this morning, AMD CEO Lisa Su unveiled the company’s latest and much-anticipated server products: the new Milan-X CPU, which leverages AMD’s new 3D V-Cache technology; and its new Instinct MI200 GPU, which provides up to 220 compute units across two Infinity Fabric-connected dies, delivering an astounding 47.9 peak double-precision teraflops. “We're in a high-performance computing megacycle, driven by the growing need to deploy additional compute performance... Read more…

Intel Reorgs HPC Group, Creates Two ‘Super Compute’ Groups

October 15, 2021

Following on changes made in June that moved Intel’s HPC unit out of the Data Platform Group and into the newly created Accelerated Computing Systems and Graphics (AXG) business unit, led by Raja Koduri, Intel is making further updates to the HPC group and announcing... Read more…

Intel Completes LLVM Adoption; Will End Updates to Classic C/C++ Compilers in Future

August 10, 2021

Intel reported in a blog this week that its adoption of the open source LLVM architecture for Intel’s C/C++ compiler is complete. The transition is part of In Read more…

Killer Instinct: AMD’s Multi-Chip MI200 GPU Readies for a Major Global Debut

October 21, 2021

AMD’s next-generation supercomputer GPU is on its way – and by all appearances, it’s about to make a name for itself. The AMD Radeon Instinct MI200 GPU (a successor to the MI100) will, over the next year, begin to power three massive systems on three continents: the United States’ exascale Frontier system; the European Union’s pre-exascale LUMI system; and Australia’s petascale Setonix system. Read more…

Leading Solution Providers

Contributors

Hot Chips: Here Come the DPUs and IPUs from Arm, Nvidia and Intel

August 25, 2021

The emergence of data processing units (DPU) and infrastructure processing units (IPU) as potentially important pieces in cloud and datacenter architectures was Read more…

D-Wave Embraces Gate-Based Quantum Computing; Charts Path Forward

October 21, 2021

Earlier this month D-Wave Systems, the quantum computing pioneer that has long championed quantum annealing-based quantum computing (and sometimes taken heat fo Read more…

HPE Wins $2B GreenLake HPC-as-a-Service Deal with NSA

September 1, 2021

In the heated, oft-contentious, government IT space, HPE has won a massive $2 billion contract to provide HPC and AI services to the United States’ National Security Agency (NSA). Following on the heels of the now-canceled $10 billion JEDI contract (reissued as JWCC) and a $10 billion... Read more…

The Latest MLPerf Inference Results: Nvidia GPUs Hold Sway but Here Come CPUs and Intel

September 22, 2021

The latest round of MLPerf inference benchmark (v 1.1) results was released today and Nvidia again dominated, sweeping the top spots in the closed (apples-to-ap Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer... Read more…

Three Chinese Exascale Systems Detailed at SC21: Two Operational and One Delayed

November 24, 2021

Details about two previously rumored Chinese exascale systems came to light during last week’s SC21 proceedings. Asked about these systems during the Top500 media briefing on Monday, Nov. 15, list author and co-founder Jack Dongarra indicated he was aware of some very impressive results, but withheld comment when asked directly if he had... Read more…

2021 Gordon Bell Prize Goes to Exascale-Powered Quantum Supremacy Challenge

November 18, 2021

Today at the hybrid virtual/in-person SC21 conference, the organizers announced the winners of the 2021 ACM Gordon Bell Prize: a team of Chinese researchers leveraging the new exascale Sunway system to simulate quantum circuits. The Gordon Bell Prize, which comes with an award of $10,000 courtesy of HPC pioneer Gordon Bell, is awarded annually... Read more…

Quantum Computer Market Headed to $830M in 2024

September 13, 2021

What is one to make of the quantum computing market? Energized (lots of funding) but still chaotic and advancing in unpredictable ways (e.g. competing qubit tec Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire