Meet Gina Tourassi, Director of the ORNL National Center for Computational Sciences

November 23, 2021

Nov. 23, 2021 — This is a continuing profile series on the directors of the Department of Energy (DOE) Office of Science User Facilities. These scientists lead a variety of research institutions that provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nano world, the environment, and the atmosphere.

Meet the director:

Gina Tourassi, director of the National Center for Computational Sciences, which hosts the Oak Ridge Leadership Computing Facility, a DOE Office of Science user facility at ORNL. Image Credit: Carlos Jones, ORNL

Since Gina Tourassi began her career, computer science has come a long way. Tourassi learned programming in the 1980s starting with QBasic. It’s a programming environment that hasn’t been included with Microsoft operating systems for more than 20 years. When she first discovered her love of computational research, computer scientists were programming artificial intelligence (AI) algorithms from scratch.

As a college physics student at the Aristotle University of Thessaloniki in Greece, Tourassi enjoyed applied math and physics courses. These courses pivoted her toward biomedical engineering for her graduate studies. In graduate school at Duke University, she realized a major passion for both research and computing. Tourassi decided to moveh3 into big data analytics, computational modeling, and AI for health care delivery. Tourassi spent 16 years in the Department of Radiology at the Duke University School of Medicine. Then she embarked upon a new adventure at Oak Ridge National Laboratory (ORNL), where she was hired to direct the Biomedical Sciences and Engineering Center.

Today Tourassi is the director of the National Center for Computational Sciences (NCCS) at ORNL. There, she is leading the center’s staff members in initiatives related to its world-class computing infrastructure programs and projects. These initiatives include the efforts to launch the nation’s first exascale system, the HPE Cray EX Frontier, which will be housed at ORNL. Exascale supercomputers will be capable of one quintillion calculations per second, or 1 with 18 zeroes. The NCCS hosts the Oak Ridge Leadership Computing Facility (OLCF), a DOE Office of Science user facility.

“I enjoy working side by side with NCCS staff members to deliver computing and data infrastructures for accelerated research and development,” Tourassi said. “We are giving the nation a significant advantage in the ever-changing scientific and economic landscape for open science, which makes every day meaningful.”


High-performance computing (HPC), or supercomputing, gives scientists the ability to model real-world situations at new levels of detail. It also helps them study areas that scientists can’t explore with experiment, observation, or theory alone. Computational scientists write complex mathematical formulas that can be carried out by these massive systems. The systems can then help provide solutions to some of the world’s most important problems. Using supercomputers, scientists can improve the safety and performance of nuclear power plants and aircraft. They accelerate the development of new drugs and advanced materials. They can even understand how the climate around the world is changing. Models on the OLCF’s supercomputers have explored hurricanes, fuels, diseases, and clean energy.


The director’s background:

After Tourassi completed her graduate studies at Duke University, she was awarded a postdoctoral position in the Department of Radiology at Duke University Medical Center. Within her first year, she received the National Institutes of Health Young Investigator Award, which launched her academic career. Over the next 16 years, Tourassi held positions as an assistant, associate, and then adjunct professor at Duke University School of Medicine.

In 2011, Tourassi joined ORNL as the director for the Biomedical Science and Engineering Center. She was hired to grow the research portfolio at ORNL. In 2013, she became the director of ORNL’s Health Data Sciences Institute. In 2019, only three months before the COVID-19 pandemic took hold of the United States, Tourassi became the NCCS director.

“I believe that personal and professional growth comes from taking risks, tackling new challenges, embracing change, and being comfortable with feeling uncomfortable,” Tourassi said. “The NCCS director position met many of the above criteria.”

Tourassi has also led the division as it has prepared for the installation and launch of the Frontier system. Frontier will offer best-in-class traditional scientific modeling and simulation capabilities while also leading the world in artificial intelligence and data analytics.

As director of the NCCS, Tourassi has continued to perform hands-on research. She currently leads the National Cancer Institute and DOE partnership, in addition to her role at the NCCS. The partnership is accelerating advances in predicting cancer using computing.

The facility:

The OLCF was established in 2004 to provide researchers from government, academia, and industry with access to leadership computing resources. At the time, individual programs received 100 times more computing power than what was available at other facilities.

From ORNL’s first Cray X-MP system deployed in the early 1980s to today’s 200-petaflop Summit supercomputer, the OLCF has seen more than a billionfold increase in computing power. The OLCF is now on the brink of delivering the first exascale system in the US, the 1.5-exaflop Frontier supercomputer. It will debut in 2021 and be available to users in 2022. The NCCS, a division of the Computing and Computational Sciences Directorate at ORNL, houses the OLCF.

“The OLCF—and, by extension, the NCCS—has been a global leader in HPC for nearly 30 years,” Tourassi said. “What we often forget when we talk about facilities such as the NCCS is that what makes them shine is not the technology they bring to bear but the caliber of the individuals who make it happen. These are individuals who not only have top-notch scientific and technical expertise but also unparalleled commitment to science and the national mission.”

Researchers can earn time on the OLCF systems, including Frontier, through three allocation programs: the INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, the ALCC (Advanced Scientific Computing Research Leadership Computing Challenge), and the Director’s Discretionary program.

Tourassi emphasized the diverse and unmatched capabilities that the NCCS and the OLCF afford. Both entities operate to fulfill a broad range of needs.

“The OLCF is unique in its ability to consistently answer the challenge of fielding and operating the nation’s fastest computer for open science,” Tourassi said. “The NCCS is unique in that we incorporate the OLCF into a larger HPC ecosystem that thinks more broadly and strategically to meet the nation’s compute and data needs.”

Tourassi pointed to some of the recent major successes of the OLCF’s current Summit system.

“Summit has helped the scientific community reach new heights in weather forecasting, gain new insights in materials, design efficient and durable jet engines, develop and deploy AI solutions for the national cancer surveillance program, and gain a better understanding of the coronavirus to guide vaccine development and drug targeting,” Tourassi said.

She said the upcoming Frontier system will bring even more advancements.

The HPE Cray EX Frontier supercomputer will be housed at the OLCF at ORNL. Image Credit: Jason Smith, ORNL

Exascale computing systems are capable of solving calculations more than five times faster than recent top supercomputers, exceeding a quintillion—or 1018—calculations per second. As the next level of computing performance, exascale will enable scientists to develop critically needed technologies for energy, medicine, materials, and more. The OLCF is launching one of America’s first exascale systems: the 1.5-exaflop HPE Cray EX Frontier supercomputer, a Cray system based on the Shasta Slingshot architecture and featuring AMD EPYC CPUs and AMD Radeon Instinct GPUs. For more information, please see “DOE Explains…Exascale Computing.”

Typical day:

Tourassi’s day consists of back-to-back meetings. They range from the various computing programs that the division leads, to personnel management, to the research projects she continues to lead.

“I also enjoy the regular one-on-one meetings I hold with the section heads and group leaders, which I consider important to staying connected with them, discussing challenges they face, and supporting them in achieving their goals,” Tourassi said.

Typical experiment:

The OLCF supports a broad range of scientific projects in many areas, such as biology, chemistry, geosciences, engineering, and energy. The OLCF offers researchers computing and data analysis resources many times more powerful than what they could access elsewhere.

Crystal structure of a representative cuprate superconductor and simulated photoemission spectrum. Image Credit: Zhenglu Li, Berkeley Lab

One project that the OLCF supports involves the study of superconductors. These are materials that have zero electrical resistance when they reach sufficiently low temperatures. Superconductors might be useful for technologies such as magnets for MRIs, fusion devices, and particle accelerators. A team led by Lawrence Berkeley National Laboratory’s Steven Louie and Zhenglu Li is studying copper-based superconductors to understand the interactions between negatively charged particles and the other particles in these materials. The team modeled materials on Summit and found that the negatively charged particles in these materials interact with quantum waves of vibrational motions much more strongly than was previously thought. That led to experimentally observed “kinks,” or sudden changes, in the relationship between a particle’s energy and the momentum it carries.

Another project built a workflow based on AI to more efficiently simulate the SARS-CoV-2 virus’ protein spike. Then the team, led by University of California San Diego’s Rommie Amaro and Argonne National Laboratory’s Arvind Ramanathan, ran the workflow on Summit to gain a deeper understanding of the spike and accelerate the search for medications or vaccines that might mitigate the spread of the virus or lessen its impact. The team simulated the SARS-CoV-2 virus’ spike in numerous environments, including within the SARS-CoV-2 viral envelope made of 305 million atoms. It was one of the most comprehensive simulations of the virus performed to date. The team was awarded the Association for Computing Machinery Gordon Bell Special Prize for HPC-Based COVID-19 Research for the work.

Best advice for a future director at the OLCF:

Tourassi said that success at the NCCS requires strategic thinking, not only in regard to the short-term requirements and deliverables, but also when thinking about the long-term computational and data needs of the scientific community. She said that the NCCS has a reputation of delivering some of the most unparalleled computing infrastructure for scientific research but that it can’t rely on past successes. Just as science is always advancing, the center’s computational tools and capabilities must be ever-evolving to meet emerging needs.

As far as advice to a future successor, Tourassi said: “It is important to understand that the role is to think strategically. We need to remain ever mindful and proactive in expanding our portfolio of capabilities by anticipating the scientific community’s computational needs. The DOE Leadership Computing Facilities are a disruptive force. They shape the way we think about and do science.”

DOE’s Office of Science. UT-Battelle LLC manages Oak Ridge National Laboratory for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.


Source: Oak Ridge National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

2024 Winter Classic Finale! Gala Awards Ceremony

May 28, 2024

We wrapped up the competition with our traditional Gala Awards Ceremony. This was an exciting show, given that only 40 points or so separated first place from fifth place after the Google GROMACS Challenge and heading in Read more…

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and flexibility of the platform’s AI capabilities. Announced Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storage, throughput, and new computing technologies. This round Read more…

HPC Pioneer Gordon Bell Passed Away

May 22, 2024

Legendary computer scientist Gordon Bell passed away last Friday at his home in Coronado, CA. He was 89. The New York Times has a nice tribute piece. A long-time pioneer with Digital Equipment Corp, he pushed hard for de Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC even earned a slide in Kathy Yelick’s opening keynote — Bey Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

watsonx

IBM Makes a Push Towards Open-Source Services, Announces New watsonx Updates

May 28, 2024

Today, IBM declared that it is releasing a number of noteworthy changes to its watsonx platform, with the goal of increasing the openness, affordability, and fl Read more…

ISC 2024 Takeaways: Love for Top500, Extending HPC Systems, and Media Bashing

May 23, 2024

The ISC High Performance show is typically about time-to-science, but breakout sessions also focused on Europe's tech sovereignty, server infrastructure, storag Read more…

ISC 2024 — A Few Quantum Gems and Slides from a Packed QC Agenda

May 22, 2024

If you were looking for quantum computing content, ISC 2024 was a good place to be last week — there were around 20 quantum computing related sessions. QC eve Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Europe’s Race towards Quantum-HPC Integration and Quantum Advantage

May 16, 2024

What an interesting panel, Quantum Advantage — Where are We and What is Needed? While the panelists looked slightly weary — their’s was, after all, one of Read more…

The Future of AI in Science

May 15, 2024

AI is one of the most transformative and valuable scientific tools ever developed. By harnessing vast amounts of data and computational power, AI systems can un Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire