New Initiative Uses Supercomputing, AI to Advance Cancer Treatments

October 19, 2016

Oct. 19 — Data is pouring into the hands of cancer researchers, thanks to improvements in imaging, models and understanding of genetics. Today the data from a single patient’s tumor in a clinical trial can add up to one terabyte—the equivalent of 130,000 books.

But we don’t yet have the tools to efficiently process the mountain of genetic data to make more precise predictions for therapy. And it’s needed: treating cancer remains a complex moving target. We can’t yet say precisely how a specific tumor will react to any given drug, and as a patient is treated, cancer cells can continue to evolve, making the initial therapy less effective.

Toward this goal, the U.S. Department of Energy (DOE) is partnering with the National Cancer Institute in an “all-government” approach to fighting cancer. Part of this partnership is a three-year pilot project called the Joint Design of Advanced Computing Solutions for Cancer (JDACSC), which will use DOE supercomputing to build sophisticated computational models to facilitate breakthroughs in the fight against cancer on the molecular, patient and population levels.

The pilot builds on President Obama’s Precision Medicine Initiative and Vice President Biden’s recent “Cancer Moonshot” to transition cancer therapy away from a “one-size-fits-all” approach. Instead, the goal is to move toward individualized diagnosis and treatment that accommodates a patient’s unique body chemistry and genetics.

“Cancer researchers are very good at generating all types of data, from genomic data, proteomic data and imaging data,” said Warren Kibbe, director of the Center for Biomedical Informatics and Information Technology at the National Cancer Institute. “What we’re not really good at yet is integrating all that information into a consistent model and making predictions on how a tumor will respond to a given treatment.”

CANDLE 

Key to this collaboration is a computational framework called the CANcer Distributed Learning Environment (CANDLE). Over the years, many projects have amassed a huge volume of cancer data, including tumor genomes, patient data and experiments on potential drugs. CANDLE is designed to use machine-learning algorithms to find patterns in large datasets. Machine learning is a type of artificial intelligence that focuses on developing programs that can teach themselves to grow and change when presented with new data. These patterns offer insights that may ultimately result in improved treatment or guidance on new experiments.

To date, machine learning studies have produced computational models that estimate drug response for a singular data point—say, a certain mutation. Researchers working with CANDLE, however, envision a higher degree of complexity that integrates many types of information, such as drug interactions and specifics about a patient’s genealogy, as well as the tumor’s molecular characteristics and how its protein expression varies over time.

“The research community has collected thousands of experiments with hundreds of thousands of data points characterizing tumors and their response to the drugs,” said Rick Stevens, an associate laboratory director at the DOE’s Argonne National Laboratory and professor of computer science at the University of Chicago. “By working with the national laboratories, the National Cancer Institute can now finally scale and quantify the cancer problem.”

Using this computational architecture, participating labs—Argonne, Lawrence Livermore, Los Alamos and Oak Ridge national laboratories—will focus on three problems singled out by the National Cancer Institute as the biggest bottlenecks to advancing cancer research by launching three pilots. These are: understanding key protein interactions, predicting drug response and automating patient information extraction to inform treatment strategies.

Each pilot looks at cancer from a different scale. Lawrence Livermore drives the molecular-level pilot, Argonne leads the patient-level pilot, Oak Ridge undertakes the population-level pilot and Los Alamos looks at uncertainty quantification across all three pilots.

Molecular level

Thirty percent of all cancers exhibit mutations in the Ras family—a collection of proteins that help trigger cellular machinery to make new cells or kill old ones.

The molecular-level pilot work being led by Lawrence Livermore will use the CANDLE architecture to predict how these proteins behave on the top of cell membranes. Then they will apply this knowledge to what researchers describe as the “Ras pathway problem,” where glitches cause genes to remain stuck in the “on” position, leading to cancerous tumors.

Researchers want to produce highly complex simulations that describe how a protein moves and binds to specific locations on the cell membrane. They hope such insights can be applied to the millions of Ras pathways and dramatically enhance our understanding of how they work by predicting the likelihood that a signal will take a certain path.  

Patient level 

Cancer encompasses hundreds of diseases, each with thousands of possible causes. Thus, bringing precision to therapy selection for a specific patient is the goal of the Argonne-led patient-level pilot.

With the CANDLE platform, researchers at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, will develop predictive models that guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

To do this, they will merge one type of computational model that uses data to predict phenomena with another model that uses data to explain them. The hope is that by merging these two methods, they will be able to migrate lessons learned from computer simulations to the research laboratory, where researchers test mice to verify the computer’s prediction of how a tumor will respond to a given therapy.

Researchers will also try to find mechanisms for how a particular tumor evades a therapy or develops resistance.

“Conceptually, that’s how we’re thinking the future of cancer therapies is going to move. Right now we don’t understand the biological implications of resistance well enough for any particular therapy to do a good job at predicting combinatorial therapies,” said Kibbe. “We think that simulation will allow us to do a much better job of predicting which combination of therapies would be most effective for a specific patient.”

Population level

At any one point in time, three to five percent of patients with cancer participate in a cancer clinical trial. And cataloguing all this data is still a manual task.

Oak Ridge will help the National Cancer Institute to scale its ability to monitor cancer patients across the country by automating the process of entering and extracting information. By applying natural language processing and machine learning algorithms to these millions of clinical reports, computers will be able to derive meaning from the notes that doctors and nurses write in their reports.

Once completed, this system would automatically analyze and extract information so that researchers can monitor country-wide outcomes, which can then inform treatment strategies for patients of different lifestyles, environments and cancer types.

Steps are being taken to de-identify data before population-level pilot data is shared with participating labs, Stevens said.

Next Steps

Over the next three years, both the National Cancer Institute and DOE have a monumental task; but they have a plan.

The first year will focus on merging statistical models and building machine-learning methods that make the best of their ability to explain and predict phenomena. In the second year, computer scientists will have to computationally estimate how confident they are in those predictions, and in the final year, researchers will put all of these pieces together and integrate experimental design.

“I really think we are at a unique place right now. There are some unbelievably great conversations happening across government right now about how we work together and integrate these brand new tools to enable understanding of these basic processes,” said Kibbe. “And if we can really understand the interplay of mutations, normal biological processes and cancer, we have a much better chance of being able to interfere with—and end—cancer.”

As the pilots progress from the building and merging of computational models to testing them in the laboratory, Stevens admits that you’d have to be a little fearless to go after a problem like this.

“In my nearly 20 years of working in computational biology, I can say that this is a really hard problem and it’s not clear if we know how to do this,” said Stevens. “But what the Cancer Moonshot gives us all is the ability to show the world how DOE labs can work in collaboration with the National Cancer Institute in a way that hasn’t been done before.”

“With that level of collaboration, it starts to look like less of a far-off moonshot,” he said, “and more a problem that we have a real shot at addressing.”

Support for the initiative is provided by the U.S. Department of Energy’s Office of Science, the National Institutes of Health and the National Nuclear Security Administration.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.


Source: Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AMD Epyc CPUs Now on Bare Metal IBM Cloud Servers

April 1, 2020

AMD’s expanding presence in the datacenter and cloud computing markets took a step forward with today’s announcement that its 7nm 2nd Gen Epyc 7642 CPUs are now available on IBM Cloud bare metal servers. AMD, whose Read more…

By Doug Black

Supercomputer Testing Probes Viral Transmission in Airplanes

April 1, 2020

It might be a long time before the general public is flying again, but the question remains: how high-risk is air travel in terms of viral infection? In an article for the Texas Advanced Computing Center (TACC), Faith Si Read more…

By Staff report

ECP Milestone Report Details Progress and Directions

April 1, 2020

The Exascale Computing Project (ECP) milestone report issued last week presents a good snapshot of progress in preparing applications for exascale computing. There are roughly 30 ECP application development (AD) subproj Read more…

By John Russell

Russian Supercomputer Employed to Develop COVID-19 Treatment

March 31, 2020

From Summit to [email protected], global supercomputing is continuing to mobilize against the coronavirus pandemic by crunching massive problems like epidemiology, therapeutic development and vaccine development. The latest a Read more…

By Staff report

What’s New in HPC Research: Supersonic Jets, Skin Modeling, Astrophysics & More

March 31, 2020

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

AWS Solution Channel

Amazon FSx for Lustre Update: Persistent Storage for Long-Term, High-Performance Workloads

Last year I wrote about Amazon FSx for Lustre and told you how our customers can use it to create pebibyte-scale, highly parallel POSIX-compliant file systems that serve thousands of simultaneous clients driving millions of IOPS (Input/Output Operations per Second) with sub-millisecond latency. Read more…

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Pandemic ‘Wipes Out’ 2020 HPC Market Growth, Flat to 12% Drop Expected

March 31, 2020

As the world battles the still accelerating novel coronavirus, the HPC community has mounted a forceful response to the pandemic on many fronts. But these efforts won't inoculate the HPC industry from the economic effects of COVID-19. Market watcher Intersect360 Research has revised its 2020 forecast for HPC products and services, projecting... Read more…

By Tiffany Trader

Weather at Exascale: Load Balancing for Heterogeneous Systems

March 30, 2020

The first months of 2020 were dominated by weather and climate supercomputing news, with major announcements coming from the UK, the European Centre for Medium- Read more…

By Oliver Peckham

Q&A Part Two: ORNL’s Pooser on Progress in Quantum Communication

March 30, 2020

Quantum computing seems to get more than its fair share of attention compared to quantum communication. That’s despite the fact that quantum networking may be Read more…

By John Russell

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Conversation: ANL’s Rick Stevens on DoE’s AI for Science Project

March 23, 2020

With release of the Department of Energy’s AI for Science report in late February, the effort to build a national AI program, modeled loosely on the U.S. Exascale Initiative, enters a new phase. Project leaders have already had early discussions with Congress... Read more…

By John Russell

Servers Headed to Junkyard Find 2nd Life Fighting Cancer in Clusters

March 20, 2020

Ottawa-based charitable organization Cancer Computer is on a mission to stamp out cancer and other life-threatening diseases, including coronavirus, by putting Read more…

By Tiffany Trader

Kubernetes and HPC Applications in Hybrid Cloud Environments – Part II

March 19, 2020

With the rise of cloud services, CIOs are recognizing that applications, middleware, and infrastructure running in various compute environments need a common management and operating model. Maintaining different application and middleware stacks on-premises and in cloud environments, by possibly using different specialized infrastructure and application... Read more…

By Daniel Gruber,Burak Yenier and Wolfgang Gentzsch, UberCloud

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

Julia Programming’s Dramatic Rise in HPC and Elsewhere

January 14, 2020

Back in 2012 a paper by four computer scientists including Alan Edelman of MIT introduced Julia, A Fast Dynamic Language for Technical Computing. At the time, t Read more…

By John Russell

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Fujitsu A64FX Supercomputer to Be Deployed at Nagoya University This Summer

February 3, 2020

Japanese tech giant Fujitsu announced today that it will supply Nagoya University Information Technology Center with the first commercial supercomputer powered Read more…

By Tiffany Trader

Tech Conferences Are Being Canceled Due to Coronavirus

March 3, 2020

Several conferences scheduled to take place in the coming weeks, including Nvidia’s GPU Technology Conference (GTC) and the Strata Data + AI conference, have Read more…

By Alex Woodie

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
ASROCK RACK
ASROCK RACK
AWS
AWS
CEJN
CJEN
CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
IBM
IBM
MELLANOX
MELLANOX
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Cray to Provide NOAA with Two AMD-Powered Supercomputers

February 24, 2020

The United States’ National Oceanic and Atmospheric Administration (NOAA) last week announced plans for a major refresh of its operational weather forecasting supercomputers, part of a 10-year, $505.2 million program, which will secure two HPE-Cray systems for NOAA’s National Weather Service to be fielded later this year and put into production in early 2022. Read more…

By Tiffany Trader

Exascale Watch: El Capitan Will Use AMD CPUs & GPUs to Reach 2 Exaflops

March 4, 2020

HPE and its collaborators reported today that El Capitan, the forthcoming exascale supercomputer to be sited at Lawrence Livermore National Laboratory and serve Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Unveils Latest Achievements in AI Hardware

December 13, 2019

“The increased capabilities of contemporary AI models provide unprecedented recognition accuracy, but often at the expense of larger computational and energet Read more…

By Oliver Peckham

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

IBM Debuts IC922 Power Server for AI Inferencing and Data Management

January 28, 2020

IBM today launched a Power9-based inference server – the IC922 – that features up to six Nvidia T4 GPUs, PCIe Gen 4 and OpenCAPI connectivity, and can accom Read more…

By John Russell

Summit Joins the Fight Against the Coronavirus

March 6, 2020

With the coronavirus sweeping the globe, tech conferences and supply chains are being hit hard – but now, tech is hitting back. Oak Ridge National Laboratory Read more…

By Staff report

University of Stuttgart Inaugurates ‘Hawk’ Supercomputer

February 20, 2020

This week, the new “Hawk” supercomputer was inaugurated in a ceremony at the High-Performance Computing Center of the University of Stuttgart (HLRS). Offici Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This