New Initiative Uses Supercomputing, AI to Advance Cancer Treatments

October 19, 2016

Oct. 19 — Data is pouring into the hands of cancer researchers, thanks to improvements in imaging, models and understanding of genetics. Today the data from a single patient’s tumor in a clinical trial can add up to one terabyte—the equivalent of 130,000 books.

But we don’t yet have the tools to efficiently process the mountain of genetic data to make more precise predictions for therapy. And it’s needed: treating cancer remains a complex moving target. We can’t yet say precisely how a specific tumor will react to any given drug, and as a patient is treated, cancer cells can continue to evolve, making the initial therapy less effective.

Toward this goal, the U.S. Department of Energy (DOE) is partnering with the National Cancer Institute in an “all-government” approach to fighting cancer. Part of this partnership is a three-year pilot project called the Joint Design of Advanced Computing Solutions for Cancer (JDACSC), which will use DOE supercomputing to build sophisticated computational models to facilitate breakthroughs in the fight against cancer on the molecular, patient and population levels.

The pilot builds on President Obama’s Precision Medicine Initiative and Vice President Biden’s recent “Cancer Moonshot” to transition cancer therapy away from a “one-size-fits-all” approach. Instead, the goal is to move toward individualized diagnosis and treatment that accommodates a patient’s unique body chemistry and genetics.

“Cancer researchers are very good at generating all types of data, from genomic data, proteomic data and imaging data,” said Warren Kibbe, director of the Center for Biomedical Informatics and Information Technology at the National Cancer Institute. “What we’re not really good at yet is integrating all that information into a consistent model and making predictions on how a tumor will respond to a given treatment.”


Key to this collaboration is a computational framework called the CANcer Distributed Learning Environment (CANDLE). Over the years, many projects have amassed a huge volume of cancer data, including tumor genomes, patient data and experiments on potential drugs. CANDLE is designed to use machine-learning algorithms to find patterns in large datasets. Machine learning is a type of artificial intelligence that focuses on developing programs that can teach themselves to grow and change when presented with new data. These patterns offer insights that may ultimately result in improved treatment or guidance on new experiments.

To date, machine learning studies have produced computational models that estimate drug response for a singular data point—say, a certain mutation. Researchers working with CANDLE, however, envision a higher degree of complexity that integrates many types of information, such as drug interactions and specifics about a patient’s genealogy, as well as the tumor’s molecular characteristics and how its protein expression varies over time.

“The research community has collected thousands of experiments with hundreds of thousands of data points characterizing tumors and their response to the drugs,” said Rick Stevens, an associate laboratory director at the DOE’s Argonne National Laboratory and professor of computer science at the University of Chicago. “By working with the national laboratories, the National Cancer Institute can now finally scale and quantify the cancer problem.”

Using this computational architecture, participating labs—Argonne, Lawrence Livermore, Los Alamos and Oak Ridge national laboratories—will focus on three problems singled out by the National Cancer Institute as the biggest bottlenecks to advancing cancer research by launching three pilots. These are: understanding key protein interactions, predicting drug response and automating patient information extraction to inform treatment strategies.

Each pilot looks at cancer from a different scale. Lawrence Livermore drives the molecular-level pilot, Argonne leads the patient-level pilot, Oak Ridge undertakes the population-level pilot and Los Alamos looks at uncertainty quantification across all three pilots.

Molecular level

Thirty percent of all cancers exhibit mutations in the Ras family—a collection of proteins that help trigger cellular machinery to make new cells or kill old ones.

The molecular-level pilot work being led by Lawrence Livermore will use the CANDLE architecture to predict how these proteins behave on the top of cell membranes. Then they will apply this knowledge to what researchers describe as the “Ras pathway problem,” where glitches cause genes to remain stuck in the “on” position, leading to cancerous tumors.

Researchers want to produce highly complex simulations that describe how a protein moves and binds to specific locations on the cell membrane. They hope such insights can be applied to the millions of Ras pathways and dramatically enhance our understanding of how they work by predicting the likelihood that a signal will take a certain path.  

Patient level 

Cancer encompasses hundreds of diseases, each with thousands of possible causes. Thus, bringing precision to therapy selection for a specific patient is the goal of the Argonne-led patient-level pilot.

With the CANDLE platform, researchers at the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, will develop predictive models that guide drug treatment choices for tumors based on a much wider assortment of data than currently used.

To do this, they will merge one type of computational model that uses data to predict phenomena with another model that uses data to explain them. The hope is that by merging these two methods, they will be able to migrate lessons learned from computer simulations to the research laboratory, where researchers test mice to verify the computer’s prediction of how a tumor will respond to a given therapy.

Researchers will also try to find mechanisms for how a particular tumor evades a therapy or develops resistance.

“Conceptually, that’s how we’re thinking the future of cancer therapies is going to move. Right now we don’t understand the biological implications of resistance well enough for any particular therapy to do a good job at predicting combinatorial therapies,” said Kibbe. “We think that simulation will allow us to do a much better job of predicting which combination of therapies would be most effective for a specific patient.”

Population level

At any one point in time, three to five percent of patients with cancer participate in a cancer clinical trial. And cataloguing all this data is still a manual task.

Oak Ridge will help the National Cancer Institute to scale its ability to monitor cancer patients across the country by automating the process of entering and extracting information. By applying natural language processing and machine learning algorithms to these millions of clinical reports, computers will be able to derive meaning from the notes that doctors and nurses write in their reports.

Once completed, this system would automatically analyze and extract information so that researchers can monitor country-wide outcomes, which can then inform treatment strategies for patients of different lifestyles, environments and cancer types.

Steps are being taken to de-identify data before population-level pilot data is shared with participating labs, Stevens said.

Next Steps

Over the next three years, both the National Cancer Institute and DOE have a monumental task; but they have a plan.

The first year will focus on merging statistical models and building machine-learning methods that make the best of their ability to explain and predict phenomena. In the second year, computer scientists will have to computationally estimate how confident they are in those predictions, and in the final year, researchers will put all of these pieces together and integrate experimental design.

“I really think we are at a unique place right now. There are some unbelievably great conversations happening across government right now about how we work together and integrate these brand new tools to enable understanding of these basic processes,” said Kibbe. “And if we can really understand the interplay of mutations, normal biological processes and cancer, we have a much better chance of being able to interfere with—and end—cancer.”

As the pilots progress from the building and merging of computational models to testing them in the laboratory, Stevens admits that you’d have to be a little fearless to go after a problem like this.

“In my nearly 20 years of working in computational biology, I can say that this is a really hard problem and it’s not clear if we know how to do this,” said Stevens. “But what the Cancer Moonshot gives us all is the ability to show the world how DOE labs can work in collaboration with the National Cancer Institute in a way that hasn’t been done before.”

“With that level of collaboration, it starts to look like less of a far-off moonshot,” he said, “and more a problem that we have a real shot at addressing.”

Support for the initiative is provided by the U.S. Department of Energy’s Office of Science, the National Institutes of Health and the National Nuclear Security Administration.

About Argonne National Laboratory

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.

Source: Argonne National Laboratory

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour


Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This