The HPC to Enterprise Infrastructure Leap

By Nicole Hemsoth

February 24, 2014

As more companies feel the burdens of growing data demands in terms of volume and complexity—not to mention the need to derive results on such data quickly and efficiently—the chasm between what was once considered mainstream enterprise computing and “traditional” high performance computing is  is narrowing.

As we’ve addressed in other parts of this special series on lessons that HPC can carry into a growing array of enterprise application areas, including those that have a range of defined “big data” problems, this merging of HPC and commercial computing has been underway with increasing veracity over the last few years in particular—directly in line with momentum around the many data movement, ingestion and processing, memory, efficiency and other challenges enterprise users face.

While HPC has always had a foothold in key commercial segments (financial services, oil and gas, government, etc.) the technologies that were once reserved for these large-scale commercial areas are filtering down to a wider base of existing enterprise entities. It’s not uncommon lately (in the wake of the hubbub around big data) to hear about insurance companies, web retailers, content and media companies and others taking notice of HPC technologies in new ways.  Bill Mannel, General Manager of Compute Servers at SGI echoed this following a conversation about this HPC to enterprise leap, noting, “Key lessons that commercial and enterprise datacenters can take away from HPC is that infrastructure matters based upon your application, your data, and the quality of service expectations of customers.”

While many won’t disagree with that point, for those with complex applications, infrastructure has to matter in different ways than it used to. As Cray’s VP of Storage and Data Management, Barry Bolding told us, one of the most important lessons for the commercial segments is productive scalability. “The commercial/enterprise space understands productive virtualization, which is a type of scaling that improves utilization of resources. The area of productive scaling that HPC brings to the table is efficient, productive scalability for complex systems.  Scaling to fit an HPC solution in the coming years will require efficient parallel computing (both HW and SW), efficient parallel storage (to ensure no data access bottlenecks) and scalable analytics.

Bolding says the enterprise is seeing more and more applications needs that fit this model of parallel compute, storage and analytics.  The energy sector is using new, complex algorithms to do oil and gas exploration and productive scalability is key to meeting their needs.  In this example parallel, scalable storage and compute are the core to solving the problems efficiently.

Another key lesson that HPC can bring to bear is adaptive technologies, he says, noting that “for maximum efficiency and TCO it is critical to match the application need to the appropriate underlying technology. This is contrary to the cloud model where little effort is made to match the underlying technology to the application.”

When asked about the infrastructure leap from HPC to enterprise, Paul Dlugosch of Micron explained that “It is the HPC industry that first meets the most critical and difficult problems encountered in scientific and technical computing and it is true that innovations in the HPC industry often trickle down into mainstream use in commercial/enterprise datacenters.” In some cases, he says, the innovations can migrate all the way down to the client or consumer space.” In short, although the HPC industry operates at the top of this hierarchy of compute capability, there are “lessons learned in the HPC industry that have practical application throughout the entire spectrum of compute capability.”

While performance remains an important metric, Dlugosch says a myopic focus on performance can lead towards the top of a pyramid where the performance crown may be acquired but the overall market for the technology developed might becomes proportionately smaller. “When performance is the only objective, important opportunities may be missed. A good example would be the disruption imparted on high performance microprocessor vendors by the emerging need for lower power processors where less compute performance was an acceptable trade off. The lesson here, of course, is that focus on high performance may miss very important innovations that are not based on processing performance.”

Performance does indeed drive all aspects of the computing industry, but a sole focus on compute performance can leave a business vulnerable, argues Dlugosch. While the HPC industry can better afford a concentrated focus on compute performance, this does not extend to other segments of the computing industry where performance is only one of several metrics that will determine overall success.

One other area where HPC and enterprise users can connect is in the realm of risk adversity, says Dlugosch. As he explained in a detailed interview:

The old adage that ‘nobody ever got fired for buying IBM’ reflects this point quite well.  Of course, IBM in this case is a proxy for any well established, mature and stable technology provider.  While it may be true that nobody gets fired for buying tried and true technology, entire businesses can fail because they did not recognize important technology inflection points that were coming their way.  There are many popular examples that include Wang Computer (client based word processing), Digital Equipment (personal computer) among others.

The HPC industry is quite used to operating in the domain where the opportunity for failure is high.  It is the nature of pushing the boundaries of computing capability.  So what lesson might the commercial/enterprise data centers learn for the HPC community in this respect?  You must be willing to explore technologies outside the comfort zone defined by incremental or evolutionary improvements.  Customers have a long history of driving suppliers and service providers along predictable paths of incremental improvements.  

While this may be safe and meet the needs of the immediate business, following this safe path may lead to a missed opportunities afforded by new and emerging technologies.  In particular, low end disruptions enabled by new technologies can be detrimental to businesses that are caught off guard.  While the HPC industry is naturally focused on the high end of the computing spectrum and have a higher tolerance for risk, commercial/enterprise data centers must also take ownership for innovation and not assume it will come from their technology providers or through customer demands.

The problem of choosing the proper system for a given workload is not just an HPC issue. However, according to some, including Bill Dunmire, Senior Director of Product Marketing at SGI, “High performance computing is generally unchartered territory within enterprise data centers. It is here that “clusters” are utilized for HA (server failover) or server virtualization (e.g. V-motion) as opposed to parallel computing. Shared-memory systems are completely unknown.” He notes that in such cases, “IT will be required to develop expertise in HPC and will need to avoid inefficiencies in performance, scalability, and cost as LOB demands grow.”

Add to that general view, the more complex matters of system design and architecture which, as Jack Dongarra of Oak Ridge National Lab and the University of Tennessee told us, leads traditional HPC and enterprise users of advanced computing to two key questions—first, how can/should the internal architecture of HPC systems be changed to make them more suitable for data driven commercial applications? Second, how can/should external storage systems and their interfaces be adapted in order to efficiently orchestrate, as part of the overall workflow, the movement of data into and out of these systems? At this point in time, however, these questions seem to only generate more questions rather than any widely accepted (or even plausible) answers.

“Issues of interoperability are closely related with fundamental questions about the architecture and codesign of hardware and software infrastructure,” Dongarra explained. “Unfortunately, these same factors tend to make them relatively intractable. For interoperability has to mean more than just “everyone adopts the same standard or the same interface.” Aside from cases where de facto or de jure monopoly power is exercised, a viable approach to interoperability for infrastructure means designing protocols and interfaces that people voluntarily adopt because they can use them to achieve their functional goals while also achieving deployment scalability and sustainability over time.”

Echoing Jack Dongarra’s questions and potential roadblocks to widespread changes in enterprise computing, HPC researcher, Dr. Kirk Cameron of Virginia Tech explained that “The problems of scalability, speed, and complexity manifest acutely at the extreme scales that challenge the HPC community daily. Thus, the incessant need in HPC to maintain competitiveness by pushing simulation fidelity and scale to solve problems of grand importance to a myriad of sciences ensures the rapid adoption of cutting edge technologies.” He points to certain technologies, such as the Cell Broadband Engine, are vetted and then only briefly embraced by commercial enterprises. Other technologies, such as general purpose graphics processing units (GPGPUs), are vetted and ultimately adapted and integrated into the mainstream as evidenced by Intel and AMD embracing systems-on-chip technologies with GPGPUs built in. Much like high-performance car racing drives advances in automobile efficiency, HPC pushes the limits of computing so that commerical/enterprise datacenters can adopt best-in-class techniques and technologies to reduce the burden on their in-house R&D efforts.”

The central question is which technologies will enterprises seek and adopt that filter from HPC, especially with some of the potential barriers Dongarra and others have mentioned. To arrive at a more thorough answer to that question, we’ll be exploring a few aspects of these topics in coming special sections in the HPC to enterprise series around accelerators, HPC clouds and overall workflow/software issues later this week.

 

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Harvard/Google Use AI to Help Produce Astonishing 3D Map of Brain Tissue

May 10, 2024

Although LLMs are getting all the notice lately, AI techniques of many varieties are being infused throughout science. For example, Harvard researchers, Google, and colleagues published a 3D map in Science this week that Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of that at the upcoming ISC High Performance 2024, which is hap Read more…

Processor Security: Taking the Wong Path

May 9, 2024

More research at UC San Diego revealed yet another side-channel attack on x86_64 processors. The research identified a new vulnerability that allows precise control of conditional branch prediction in modern processors.� Read more…

The Ultimate 2024 Winter Class Round-Up

May 8, 2024

To make navigating easier, we have compiled a collection of all the 2024 Winter Classic News in this single page round-up. Meet The Teams   Introducing Team Lobo This is the other team from University of New Mex Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have become the backbone of devices with an on/off switch. Thes Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. According to the reports, photonics quantum computer developer PsiQu Read more…

ISC Preview: Focus Will Be on Top500 and HPC Diversity 

May 9, 2024

Last year's Supercomputing 2023 in November had record attendance, but the direction of high-performance computing was a hot topic on the floor. Expect more of Read more…

Illinois Considers $20 Billion Quantum Manhattan Project Says Report

May 7, 2024

There are multiple reports that Illinois governor Jay Robert Pritzker is considering a $20 billion Quantum Manhattan-like project for the Chicago area. Accordin Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

How Nvidia Could Use $700M Run.ai Acquisition for AI Consumption

May 6, 2024

Nvidia is touching $2 trillion in market cap purely on the brute force of its GPU sales, and there's room for the company to grow with software. The company hop Read more…

Hyperion To Provide a Peek at Storage, File System Usage with Global Site Survey

May 3, 2024

Curious how the market for distributed file systems, interconnects, and high-end storage is playing out in 2024? Then you might be interested in the market anal Read more…

Qubit Watch: Intel Process, IBM’s Heron, APS March Meeting, PsiQuantum Platform, QED-C on Logistics, FS Comparison

May 1, 2024

Intel has long argued that leveraging its semiconductor manufacturing prowess and use of quantum dot qubits will help Intel emerge as a leader in the race to de Read more…

Stanford HAI AI Index Report: Science and Medicine

April 29, 2024

While AI tools are incredibly useful in a variety of industries, they truly shine when applied to solving problems in scientific and medical discovery. Research Read more…

IBM Delivers Qiskit 1.0 and Best Practices for Transitioning to It

April 29, 2024

After spending much of its December Quantum Summit discussing forthcoming quantum software development kit Qiskit 1.0 — the first full version — IBM quietly Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Leading Solution Providers

Contributors

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire